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The Euclidean Algorithm
Division

Number theory is the mathematics of integer arithmetic.  In this chapter we will restrict

ourselves to integers, and in particular we will be concerned primarily with positive integers.

Every thing that we will do follows from the theorem known as The Division Algorithm (note

that the theorem itself is not an algorithm.   

Theorem: Given two integers n and d, with d positive, there are integers q and r with

0 # r < d such that n = dAq + r.  

q is called the quotient of n from division by d (the divisor) and r is called the remainder.  r = 0

if and only if d divides n evenly.   This theorem should seem obvious to anyone competent at

grade school arithmetic.  If the proof and its discussion is a little too complex, at this point in

your development, feel free to go to the next section (Division Rules).  The usual proof of this

is to use the principle of induction to prove the well ordering of the positive integers; that is that

any non-empty set of positive integers has a least element.  (We will prove this in section 11.)

Then we look at the numbers n, n - d, n - 2d,..., and apply the well ordering property.  Here we

are very close to an algorithm for finding q and r.  Also, note that this proof requires that n is

positive but the proof that we will use will also show that this is not a problem.  The proof that

we will do here is by induction and does not use the well ordering property. 

Proof of The Division Algorithm:

Given integers n and d (d > 0) we want to show that there are unique integers q and r,

with 0 # r <  d such that n = qAd + r.  If n = 0 then q = 0 and r = 0.  Suppose the theorem

holds for positive n.  Then given n < 0 and d > 0, there exists  q and r, with 0 # r <  d,

such that !n = qAd + r.  Hence n = !qAd ! r.  If r = 0 then we are done.  Otherwise we add

and subtract d from the right hand side (which means we have added zero and
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maintained the equality) giving us  n = !qAd ! r + d ! d.  Rearranging we get

n = !(q + 1)d + (d !r).  This is the form we are looking for with remainder (d !r) and

with 0 < (d !r) < d (we have already done the case where the remainder is zero).  Hence

from now on we can (and will) assume n > 0.  Next we will show that if q and r exists,

they must be unique.  Suppose otherwise that n = q1Ad + r1 and that n = q2Ad + r2.

Subtracting the first equation from the second (thus eliminating n) and rearranging we

get (q1!q2)Ad =  r2!r1.  This implies d divides r2!r1.  Since both  r2 and r1 are positive and

each is less than d their difference is between !d and d exclusive.  Hence r2!r1 = 0 and

thus r2 =  r1.  This forces q1= q2.  Thus q and r, if they exists are unique.  If d = 1 then

choose q = n and r = 0 and we are done.  Now fix d as a constant greater than 1, and we

will use induction on the size of n to prove the theorem.  Suppose n = 1, then since d > 1,

we q = 0 and r = 1 satisfy the theorem.  Now–this is the induction hypothesis–assume

that the theorem holds for n = k.  (n is already in use here so we use k in n’s usual role

in induction.)  Set n = k + 1.  By the induction hypothesis there are a unique q and r such

that k = dAq + r with 0 # r < d.  Therefore, k + 1 = dAq + r + 1.  Now if r + 1 is less than

d, we are done.  Otherwise since r < d, we must have  r + 1  =  d.  Then

k + 1 = dAq + r + 1 = dAq + d.  That is, k + 1 = (d + 1)Aq.   In this last case r = 0 and we

are done. 

Division Rules
Remember, n|a means that n divides a, or more specifically (repeating the definition from

Section 3) that there is an integer m such that a = nAm.  Similarly n|a, b means that n divides both

a and b.  The following two division properties will be useful to us.  We’ll refer to these as the

division rules.

1. If n*a, b then n*a, b-a.

2. If n*a, b-a then n*a, b.
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1Actually we might reach a negative number.  However, we simply rules this out. If the
two numbers are unequal we replace the larger by a smaller positive value.  This cannot continue
forever.  Eventually the two values will be equal and we replace one by zero.

2We could always terminate at (x,x), however going to (x,0) only adds one step, and it
is also a good termination criteria for later versions of the algorithm.
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Again: X / Y (mod n) ] n*X - Y

G   Exercise  1  Prove the two division rules given above.

Given two positive integers, m and n, their common divisors are the integers that divide

both of them.  There can only be a finite collection of such integers and therefore there must be

a greatest such integer:  the greatest common divisor.  We can denote the greatest common

divisor of m and n by GCD(m,n).  However, we will generally follow the practice typical in

number theory, where it is denoted by just (m,n).  The division rules above imply

(n,m) = (m,n-m).

Euclid's Algorithm

This last statement is the key to an algorithm.  Given a problem: find (n,m) (where

n > m) we can reduce the problem to (m,n-m).  For example, if we want to solve (95,80) we have

that it is the same as (80,15) and by the same logic that is the same as (65,15), which becomes

(50,15), which in turn is (35,15) = (20,15) = (15,5) = (10,5) = (5,5) = 5.  Obviously, we have the

makings of an algorithm.  The main question is what is a termination criteria for the algorithm

that will always work.  If we pursue the above strategy of always replacing n by n-m we must

eventually reach 01.  If we in turn accept (m,0) = m then we are finished.  Indeed m does divide

0 in that mA0 = 0.  In the above example we would continue (5,5) = (5,0) = 5.2  We will call the
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algorithm Euclid's Algorithm  since it is closer to what Euclid had than the modern version The

Euclidean Algorithm which will follow later.

Euclid's Algorithm
I. Input positive integers n, m with n $ m.

II. If m = 0 then GCD is n; we are done.

III. n 7n - m.

IV. If m > n then n : m (exchange m and n).

V. Goto 2.

As before, it is good programming practice to rewrite the algorithm without the goto

statement.  That will be done twice, first as an exercise and second, recursively in the next

section.

G   Exercise  2 Rewrite Euclid's algorithm without the goto statement.

It is not difficult to rewrite Euclid's algorithm into a recursive form.

Euclid's Recursive Algorithm
I. Input positive integers  m, n.

II. Function GCD(n, m):  {This is the recursive procedure.}

If 1.n < m then m : n.

If m = 0 then GCD 7 n.  Stop.  {This is the termination criteria.}

Call GCD(m, n–m).  {This is the recursive call.}

End Function.

In this instance GCD(x, y) is a function:  it returns a value z = GCD(x, y).  The structure

shown above actually works.  Note that the statement Call GCD, which calls the function, is
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We are viewing the Euclidean algorithm as a speed-up version of Euclid's algorithm.

Instead we could proceed by replacing the division rules by the following two rules and

go directly to the Euclidean algorithm:

1. n*x, y Y n* x, (x mod y)

2. n*y, (x mod y) Y n*x, y

Collectively these two laws imply that (x, y) = (y, x mod y).  Since x mod y is the

remainder of x upon division by y, x mod y is smaller than y and thus (y, x mod y) is a

reduction of the (x, y) problem.

within the function.  The algorithm can be coded with exactly the structure given here in many

programming languages including Pascal, Java, C, Ada, and Lisp.  

G   Exercise  3 Run through Euclid's Recursive Algorithm for inputs 80, 95;  55, 49;

144, 89.

The Euclidean Algorithm

The Euclidean algorithm is a slight modification of what we have as Euclid's algorithm.

It is a simplification in that it usually requires fewer steps to run, but it is a complication in that

it replaces  subtraction with division.  The key insight is that given a problem like (80, 15)

instead of proceeding to (65, 15) = (50, 15) = (35, 15) = (20, 15) = (15, 5),  we can go from

(80, 15) to (15, 80 mod 15) by using the division algorithm.  

The Euclidean Algorithm is stated similarly to Euclid's algorithm:
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The Euclidean Algorithm
I. Input positive integers n,m with n $ m.

II. If m = 0 then GCD is n; we are done.

III. n 7 n mod m.

IV. n : m. 

V. Goto 2.

The difference between this algorithm and Euclid's algorithm is that in statement three

we have n 7n mod m whereas before we had n 7n - m.  In this case when we get to statement

four, we do not need to test whether m is greater than n because by definition we know that

n mod m is less than m.  As before we should rewrite the algorithm to get rid of the goto

statement.  One way to do that is to write the algorithm recursively:

The Recursive Euclidean Algorithm
I. Input positive integers n,m with n > m.

II. Function GCD(n ,m)

If m = 0 then GCD = n;  Stop.

 Call GCD(m, n mod m).

End Function.

This algorithm not only works but it is elegant and it works efficiently.

G   Exercise  4 Use the recursive Euclidean algorithm to solve (90, 12);  (194, 78);  (144,

89).  Whereas it is true that the Euclidean algorithm can be shown to be
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2In mathematics jargon we would say that a, b, ... ,m are arguments of the function GCD.
However, to non-math majors it sounds like we are talking about disagreements.
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efficient, the same analysis also demonstrates that the worst case is where

n and m are consecutive Fibonacci numbers such as 89 and 144.1

G   Exercise  5 The least common multiple of two numbers x, y is denoted LCM(x,y).

It is the smallest positive integer evenly divided by both numbers.  Prove

that .

G   Exercise  6 It is not hard to guess the meaning of GCD(a,b,...,m) where there are

more than two numbers.2  Show that when there are more than two

numbers that the following recursive definition is correct:

GCD(a,b,...,m,n) = GCD(GCD(a,b,...,m),n). 
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1. We have to show that n*a,b!a is equivalent to n*a,b.  n*a,b implies there are positive
integers q1 and q2 such that a = q1An and b = q2An.  Hence, b ! a = q2An ! q1An = n(q2 ! q1)
which means that n*b ! a.  Similarly, suppose that n*a,b!a, then there exists positive
integers q1 and q2 such that a = q1An and b!a = q2An.  Then b = b!a + a = q1An + q2An =
n(q1 + q2) and n*b.

2. Input positive integers n, m with n $ m.
Do While m … 0 

Begin
n 7n - m
If m > n then n : m 
End

GCD 7 n

3. The pairs of integers are exactly the same as for the non-recursive algorithm.  The code
is different and in a sense the logic is different, but the sequence of events are the same.

(95,80) 6 (80,15) 6 (65,15) 6 (50,15) 6 (35,15) 6 (20,15) 6 (15,5) 6 (10,5) 6 (5,5) 6
(5,0) 6 5

(55,49) 6 (49,6) 6 (43,6) 6 (37,6) 6 (31,6) 6 (25,6) 6 (19,6) 6 (13,6) 6 (7,6) 6 (6,1) 6
(5,1) 6 (4,1) 6 (3,1) 6 (2,1) 6 (1,1) 6 (1,0) 6 1

(144,89) 6 (89,55) 6 (55,34) 6 (34,21) 6 (21,13) 6 (13,8) 6 (8,5) 6 (5,3) 6 (3,2) 6
(2,1) 6 (1,1) 6 (1,0) 6 1

4. The pairs of integers are exactly the same as for the non-recursive algorithm.  The code
is different and in a sense the logic is different, but the sequence of events are the same.

(90,12) 6 (12,6) 6 (6,0) 6 6

(194,78) 6 (78,38) 6 (38,2) 6 (2,0) 6 2

(144,89) 6 (89,55) 6 (55,34) 6 (34,21) 6 (21,13) 6 (13,8) 6 (8,5) 6 (5,3) 6 (3,2) 6
(2,1) 6 (1,1) 6 (1,0) 6 1 (Note that this sequence is exactly as in the previous exercise
and algorithm.)
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5. Write x = zx' and y = zy' where z is the GCD(x,y).  In particular, x' and y' can not have
any remaining common factors.  x'y'z is a common multiple of both x and y since it is
equal to xy' and x'y.  Also, it must be the least common multiple, since any common
multiple of x and y must contain x', y', and z and these three terms have no common

factors.  However,  .

6. GCD(a,b,c,...,n) must refer to the greatest divisor of all the numbers a,b,c,...,m,n.  We
want to verify the recursive relation GCD(a,b,...,m,n) = GCD(GCD(a,b,...,m),n).
Suppose that x is a divisor of a,b,c,...,m,n, then it is a divisor of n and it is a divisor of
a,b,...,m.  Similarly, if x is a divisor of n and of a,b,...,m then it is a common divisor of
a,b,c,...,m,n. 


