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Bezout’s Lemma

Let'slook at the values of 4x + 6y when x and y areintegers. If x is-6 andy is4 we get
zero. If xis-landyis1lweget 2. Infact alittle experimentation will convince you that you
can get all the even integers but only even integers. That is4x + 6y generates the collection of
even integers. We will denote this set by 2Z.* Similarly 3Z would represent the collection of
al multiples of 3: 3Z = {...-12,-9,-6,-3,0,3,6,9,12,...}. It turns out that if we look at
expressions of thefrom ax + by, or ax + by + cz where a, b and c arefixed integers (for example,
2x + 7y or 5x + 10y + 5z) we always get all multiples of some integer (which were defined
earlier asmodules). For example if welook at all values of 5x + 10y + 5z, we get 5Z whichis
{...-10,-5,0,5,10,...}. It would be very useful if you would take 15 minutes to see for yourself
what numbers you can generate with 4x + 6y and with 6x + 9y and with 4x + 7y. Thisall can

summarized by one of the most useful theorems in discrete mathematics:

Z inthis context isused asit isgenerally used in abstract algebrato mean integer. This
is from the German word for number, zahl.



Theequation ax + by = cwhereall lettersareintegersand a, b, and ¢

are known, issolvableif and only if (a, b)|c.

Bezout's Lemma
Thistheorem is sometimes known as Bezout'slemma. Thetheorem also holdstrueif we extend

it to more than 2 variables. For example, 5x + 7y + 4z takes on the values GCD(5,7,4)-Z = Z.
That is, 5x + 7y + 4z takes on the values of al integers. Similarly 4x + 12y + 8z takes on the
values of GCD(4,12,8)Z = 4Z.

Example 4x + 12y = 8 is solvable because (4,12) = 4 and 4|8, but 4x + 12y = 6 is not
solvable because 4/6 (4 does not divide 6). 3x + 6y = 15 has a solution because
(3,6) =3 and 3|15. Similarly, 8x + 10y = 29 does not have a solution because
(8,10) = 2 and 2/29.

If the proof istoo difficult to follow, jump ahead to the next heading. But first make sure you
understand what the theorem says.! There is a second proof in the second appendix to this
section.

To prove Bezout's lemma, we need to prove our assertion above that expressions of the
form ax + by where aand b are fixed integers are all multiples of asingle constant d. Let d be
the smallest positive value taken on by expressions of the form ax + by. Suppose that thereis
anumber c of the form ax + by that is not amultiple of d. Suppose also that c is positive (if ¢
IS negative then -c isapositive value taken on by ax + by). By the division algorithm we can
divide d into ¢ so that we get a positive remainder less than d. It can’t be zero because we

assumethat d does not dividec. That is, thereisagandanrsuchthatd>r>0andc=dq+r.

'For those who have had abstract algebra, there is an easier route to Bezout's lemma.
First, note that with a and b fixed, the expression ax + by generates a subgroup of the integers
under addition. Hence, this group must be cyclic. Denote the positive generator of this set as
d. Itiseasy toshow that d dividesboth aand b. It isalso easy to show that any common divisor
of aand b dividesd. Henced = (ab).



Let X,, Yo, X5, @nd y,; be the integers that satisfy ax, + by, = d and ax;, + by, = ¢. Then
a(X; — OXo) + by, — ayo) = aX, — gax, + by, - by, =ax; + by, - q(ax, + byy) =c - qd=r. That
is, risavauetakenonby ax + by. Butrislessthan d and disby definition the smallest positive
value of ax + by and we have a contradiction. Hence ax + by takes on all of the multiples of
some number d and takes on only those values.

To finish the proof of Bezout's lemma, let us suppose that a, b, and ¢ are fixed integer
values (they can be negative as well as positive). We still denote the smallest positive value
achieved by ax + by asd. Let (ab) = g; then we can write a= ag, and b = b'g. We now have
that ax + by = agx + b'gy = g(ax + b'y) =c. Hencegmust dividec. Alsoit must divided since
disavauethat c can have. (If it doesn't, then ax + by = ¢ has no solution.) Now, two values
achieved by ax + by areaand b. Thefirst occurs when x = 1 and y = 0 and the second occurs
whenx =0andy = 1. Sinced divides all values achieved by ax + by, it must divide aand b.
Hence it isacommon divisor of aand b. But since the largest common divisor of aand b, g,

divides d, then d and g must be equal.

Relatively Prime Integers. L

We say two integers, aand b, arerelatively primeif they have no common positive factor
other than 1: GCD(a, b) = 1. Thisisalso denoted: arb.® For example: 315, 419. If nisany

positive integer, 1..n and n(n+1).

This notation was suggested in Concrete Mathematics: A Foundation for Computer
Science by Graham, Knuth and Patashnik, Addison-Wesley, 1989.
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Euclid'sLemma

Bezout's lemmagives us one of the most useful facts of number theory, which isknown

as Euclid's lemma.

If a|bc and aLb then a|c.

Proof: By Bezout'slemmathereisasolutionto ax + by =1. We multiply both sidesby c to get
acx + bey = ¢. adivides both terms on the left hand side because it is afactor of the first term

and we were given that a|bc. Hence ac.

Divisonin Z,

Remember Z, is arithmetic modulo n in a sightly different guise. In Z, we restrict
ourselves to the integers {0,1,2,...,n-1}. Once we are in Z,, these are the only integers that
exists. In Z, addition, multiplication, and subtraction are very much like in the integers. The
tricky operation isdivision. Wewill define two kinds of elementsin Z,. Thefirst are units. x
isaunit if it hasamultiplicative inverse. That is, X isaunit if there exists an element x' such
that x-x' = 1. An element, x # O, isadivisor of zero if there exists an element x" # 0 such
x-X" = 0. Suppose that x has an inverse and is a divisor of zero. Then there exists x' so that
x-X' = 1 and there exists an element x" such that x-x" = 0. Multiply both sides of x'x' = 1 by x"
so that x™x-x' = x"; (X"Xx)x' = x"; O-x' = x"; 0 = x". But by definition x" # 0. Thisis a
contradiction, and it means that an element cannot be both a unit and a divisor of zero.

We will now show that every element in Z,, other than O, isaunit or adivisor of zero.
Supposethat element aisrelatively primeton. Then, from the preceding section, we know that
ax +bn=1hasasolution. Hence, ax = 1 (mod n) hasasolution and aisaunit. Suppose that

element ais not relatively primeton. Then (g n) =dwithd >1. We can writea=a-d and



n=n"dwithl<n'<n. (RememberthatinZ,n=0.) Thenan'=a-dn'=a-:0=0. Hence, in
Z, every non-zero element isa divisor of zero or isa unit.

If nisaprime number, then every non-zero number in Z isaunit. In such acase, we
have division. We divide aby b, by multiplying a by the inverse of b which we denote here as
b*. Wedefinea/b =ab™. For examplein Z,, divisioniswell defined. InZ,, 35=33=2;
24=22=4; 51=51=5.

If nis a composite number, on the other hand, then we have some elements that are

divisors of zero. For example, in Zg, we can divide by 1 and 5 only and 2, 3, and 4 are divisors

of zero.

O Exercise 1 Comparethe multiplication tables of Z, and Z, to see why one system has
division and the other does not.

O Exercise 2 InZ,,, divided4 by 2, 3,5, 7,8, and 11.

Cancdllation in Modulo n Arithmetic

It is now easy to see that if (c, n) = 1 that cancellation can be performed on
ac = bc (mod n). Since cisrelatively primeto n there exists ¢ * such that cc* = 1 (mod n).
Multiplying both sides of ac = bc (mod n) by c* weget acc! = bcc (mod n) and then
a=c(modn). If (c,n) # 1 then al bets are off. For example, 2.4 = 2:1 (mod 6) but

4 # 1 (mod 6). We can however state the following rule:

ac = bc(modn) = aEb(modL)
(cn)

O Exercise 3 Provethe general law of cancellation just given. (Hint, this problem can

be solved by using Bezout's lemma and then Euclid's Lemma.)



How to Solve ax = b (mod n)

Bezout'slemmawill answer whether ax = b (mod n) has asolution for x (a, b, and nare

given). By definition, ax = b (mod n) if njax - b. But ndividesax - b isequivaent to saying

that there exists some integer ¢ such that ax - b = cn. In other words ax = b (mod n) has a

solution if and only if thereisasolution to ax - cn = b. By Bezout'slemma, ax - cn=b hasa

solution (for x and c) if and only if (a, n)|b. Onetrick to solve ax = b (mod n) for x isto solve

ax - cn = b for x and c. How to solve this is shown in the next section. However, thereis

another method which always works as well.

Example

Example

Example

We want to find solutionsto 2x = 5 (mod 7). It hasasolutionif (2, 7)[5, which
it does. Tofind the solution, we add the modulus, whichis congruent to O, to the

right hand side. Thisgivesus2x = 12 (mod 7), and thus the solution isx = 6.
With the congruence 2x = 5 (mod 6), (2, 6) = 2 which doesn’t divide 5. Hence
thereis no solution.

Wewant to solve 12x = 18 (mod 42) which hasasolution since (12, 42)[18. The
first step to solving this problemisto perform cancellation. Since 6 dividesboth

42 st (mod 7).
(6,42)

sides, we can reducethe problemto 2X =3 [mod

Now the general solution technique will be explained shortly. But in this case
it goesasfollows. By adding 7 (whichiscongruent to 0) to theright side, we get
the solution x = 5. By repeatedly adding 7 to 5 we get 6 solutions, within
modulus 42, which are: 5, 12, 19, 26, 33, 39.

Consider now the problem ax = b (mod p) where a, b, and p are given and p is prime.

If p does not divide a, then (&, p) = 1 and the problem has asolution. If p doesdivide a, then a

is congruent to O and the problem then is equivaent to Ox = b (mod p) which leads to
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0=b(modp). Thatisif bisamultipleof p then any x will work otherwisethereisno solution.

Example Consider ax = b (mod 7). Since 7 isaprime, if aisnot amultiple of 7 thereis
asolution. For example 2x = 1 (mod 7) hasthe solutionx =4. 3x = 1 (mod 7)
hasthe solution x =5. 4x = 1 (mod 7) hasthe solutionx = 2. 5x = 1 (mod 7) has

the solution x = 3. 6x =1 (mod 7) has the solution x = 5.

All Solutions of ax = b (mod n)

Now let us get alittle more ambitious. Instead of just solving ax = b (mod n) we want
all of its solutions. If k is a solution of ax = b (mod n), then k + r-n (r any integer) isalso a
solution. Thisisbecausen = 0 (mod n). To make thingsinteresting let us then concentrate on
the solutions with the range from 1 ton - 1. That iswewant all solutions within the modulus.
Another way of looking at it isthat we want all of the solutions of ax = b in the number system
v

Again: ax = b (mod n) hasasolution if and only (a, n)|b. Inthis case, that ax = b (mod

n) has a solution, we can cancel (a, n) out of a and b to get the new equation:

a b [ g
@n’ @nmlm

@ n)) . We rewrite thisas a’x = b’ (modn’). Wenow havethat

n’ isrelatively prime to a’ (because we have already divided out their common factor). Using
Bezout’s Lemma we can show that by repeatedly adding n’ to the right hand side of a’x = b’

(mod n’) we can eventually solvefor x. Given a solution, x, of a’x = b’ (modn’), itisasolution

n
of ax = b (mod n) but soisx + t-m (wheret is any integer). This follows from that fact

thata- and again that n = 0 (mod n). Our question then becomes, how many

n B a
@n " (an)



n
multiples are there of —— within the modulus n? The answer is (a, n). Putting all of this

(a,n)

together we get:

ax = b (mod n) has a solution if and only if (a, n)|b. In that

case, in the system z, there are (a, n) solutions. If y isone

such solution, thenthe othersarey + y+2 and

(a,n) (a,n)’

so on (where n can be any integer).

How Not to Solve ax = b (mod n): Multiplication Can be Evil

Consider the problem 9x = 3 mod 12. If we multiply both sides by 2, we get
6x = 6 mod 12. Thisyieldsx = 1 mod 12, whichisnot asolution. In fact using the technique
above the solutions within modulus 12 are 3, 7, and 12. Note these are aso solutions to
6x = 6 mod 12. But whenwe multiplied 9x = 3mod 12 by 2, we picked up anomal ous sol utions.
The reason, put smply, isthat in mod 12 arithmetic there are divisors of zero, such as 3 and 4.
These complicate matters. Solution by multiplication is safethen when nisaprime. However,
if we aretrying to solve ax = b (mod p) either aisamultiple of p or it isrelatively primeto p.
In thefirst case any number x solvesthe equation. In the second case, we know thereis exactly
one solution within the modulus p. Also, we know that a has an inverse mod p, a*, and

x = ab (mod p).



How to Solveax + by =c¢

Bezout'slemmatells us whether ax + by = ¢ hasasolution, but it does not tell us how to
find it. The following examples show two general technique that always work. The first is
preferable for working by hand; the second is preferable for programming. However, once we
have one solution, there are an infinite number of solutions. Itiseasy to check that if ax + by =c¢
has asolution, x, and y,, and if t isany integer, then another solutionisgiven by x = x, + bt and
y =Y, - bt. However, thismay not bethe most genera solution. Remember that ax + by = c has
asolution if and only if (a, b)|c. If (a, b) isgreater than 1, we can divide it out of the equation
and yield asimpler equation.

Example Wewant to solve 13x + 21y = 3. Thisis solvable since (13, 21)|3. The best
way to solveit (by hand) isasfollows: We solvefor x and y separately, and we
candoitinether order. However, thistimewewill doy first for the reason that
we will then work with the smaller modulus, that is mod 13 instead of mod 21.
In terms of y, we have that 21y = 3 (mod 13). This can be written
8y = 3(mod 13). We solvethisasabove, by adding the modulus, 13, to theright
hand side. We get 8y = 16. Thistime we only have added the modulus once.
Wehave y = 2 (mod 13). The second part of this method isto rewrite the last
relationas y = 2 + 13t. We then substitute thisinto the original equation to get
13x + 21(2 + 13t) = 3. Thisreducesto 13x = -273t - 39. Hencex =-3 - 21t.

We can summarize this technique as follows:
Givenax + by =c.

If (a, b)/c Then no solution [stop].

Divideax + by =cby (a b) toget Ax + By =C

Solve Ax = C (mod |B|) toget x =h + |B|t {We use | B| to ensure a positive modul us.

A W bd P

Substitute x =h + |B|tin Ax + By = C to solve for y {y will be of theformy =k - At.



It is not hard to prove that

Giventheproblemax + by =c. If x =uandy = v areany pair of solutions, then the general

tand V=V it
)

solution is of theform: X = U+

b
(a,b)

A second technique for solving equations of the form ax + by = c is to apply the
Euclidean agorithm to aand b, and then to work the algorithm backwards from the solution to
solve for x and y. This is most easily shown by an example. The general technique is the

Extended Euclidean Algorithm which is given in the first appendix to this section.

Example Wewould liketo solve 7x + 9y = 5. Since (7, 9) = 1 and since 1 divides 5 we
know that asolution exists. Our problemistofindit. Weknow in particular that
7x + 9y = 1 hasasolution, so wefirst find that. The secret isto usethe Euclidean
algorithm on 7 and 9 and to write down the steps. By retracing those steps
backwards we can solve the problem. Using the Euclidean algorithm to find the
GCD of 7and9,wehave: 9=7-1+2;7=23+1;2=2-1. Themethod requires
that we take the second to the last equation, whichinthiscaseis7=2-3+ 1. We
rewrite it to solve for its remainder which will always be the GCD; in this case
weget 1=7-2-3. Wethenwork back to thefirst equation; for each equation we
solve for the remainder and substitute that in the earlier equation, until we have
solve for the asafunction of aand b. In this case, there is only one previous
equation: 9=7-1+ 2. Solvingfor theremainder weget 2=9 - 7-1. Substituting
for2in1=7- 23, weget1=7-(9- 7-1)-3. Wewant to rearrange thisto give
our GCD whichislintermsof 7and 9. Weget: 1=4-7 - 3:9. To solveour
original problem, we multiply both sides of thisby 5to get: 5=20-7 - 159.
Hence the solution to the problem isx =20 and y = -15. The genera solution
isx=20+9%tandy=-15- 7t.
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The same method shown in the last two examples can be extended to solve problems like
6x + 10y + 15z = 7. Bezout's lemma can be extended in the obvious manner to show whether

asolution exists, and then the above technique for finding the solution can be extended aswell.

O Exercise 4 Solve 9x + 12y = 5.
O Exercise 5 Solve 9x + 12y = 6.
O Exercise 6 Solve 45x + 50y = 20.

Generation of Random Numbers

Random number generation on computers means generating a sequence of numbersthat
seem random but are not. There is one technique that has been dominant since the early days of
computers and is due to the eminent number theorist D. H. Lehmer. Although many texts give
us thisalgorithm, | think that | can make it clearer by using a simple example.

First let metell you asimplefact that is not easy to prove, and which wewill not prove,
but iseasy to understand. If nisaprime, then we know Z, hasdivision. The non-zero el ements
areall units. Itisto prove that the product of unitsisawaysaunit. That isif x and y are units
withinversesx' and y', then y'x' istheinverse of xy since xyy'x' = x(yy')x' =x1x'=xx'=1. The
remarkable fact, which | ask you to accept on faith, isthat when nis prime the units of Z, can
all be written as powers of a single unit, which is known as a primitive root modulo n.

The Lehmer algorithm generates arepeating cycle of integers. These integers are often
rewritten asuniformvariates. That meansreal numbers between 0 and 1 such that each number
isequally likely.* The algorithm requires aprime p and then generatesacycleof p - 1 integers.
Themost common primeused is2* - 1. Thismeansthat acycleof 2% - 2 integersisgenerated,
with 231 - 2 = 2,147,483,646.

Example Weuwill illustrate the algorithm by using p= 11. Thisof courseistotally useless

for generating random numbers but illustrates the a gorithm perfectly well. We

Clearly we generate afinite subset of theinterval from 0 to 1 but the object isto appear
like auniform sample from that interval.



need to find aprimitiveroot in Z,;. That iswe need a unit that when multiplies
by itself givesall ten unitsof Z,,. Itisnot ssmpleto find such aunit. Inthecase
of Z,, though there are only 10 candidates and we can find one by trial and error.
Such aprimitiveroot is 8. If we multiply 8 by itself we get 9. If wemultiply 9
by 8 we get 6, and if we multiply 6 by 8 we get 4. The whole sequenceis 8, 9,
6, 4, 10, 3, 2, 5, 7, 1. Thisis a pseudo-random sequence of length 10 and it
contains each of the integers 1 through 10 just once. To turnit into a uniform
sequence we divide each integer by 11. This gives us the sequence .727, .818,
545, .365, .909, .273, .182, .455, .636, .091.

The preceding algorithm of Lehmer'sisknown asthe multiplicative linear congruential

generator. It can be summarized as follows:

1

g b~ W DN

Start with alarge prime p and a primitive root mod p denoted by r.

Choose an integer, x, between O and p - 1.

Compute x < x-r (mod p).

Output x

Goto 3.

Notice that the algorithm as stated does not terminate. Inreality it terminates when you

have computed the last number that you want. If it isyour aim to produce asequence of uniform

variates, replace line 4 by: Output x/p. Frequently, the algorithm is made dlightly more

complex by adding an additive constant. The algorithm would then be stated:

1

a b~ W DN

Start with alarge prime p, a primitive root mod p denoted by r, and an additive constant
C,suchthat0<c<p.

Choose an integer, X, between 0 and p.

Compute x < x-r + ¢ (mod p).

Output x

Goto 3.

Thisagorithm is called a mixed linear congruential generator.
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The Fundamental Theorem of Arithmetic

Earlier we defined relatively prime, but we have not defined primes yet (they did show
up in the section on induction but that was an example that you could defer if necessary). A
positiveinteger isaprimeif itisgreater than 1, and if itsonly positive divisors areitself and one.
For example, thefirstten primesare 2, 3,5, 7, 11, 13, 17, 19, 23, 29. Students often wonder why
lisexcluded asaprime. Thereare many reasons. A simplereasonisthis. If you know that a
number nisdivided by some primep, that tells you something about n. However, knowing that
1 divides n tells you only that nis an integer, which is not information since we are restricting
ourselvesto integers. The Fundamental Theorem of Arithmetic says that each positive integer
can be written in one and only one way as a product of primes except for the order of the
numbers. If we were to write the primes in order of increasing size then the order would be
unique. Wewill haveto build up to the theorem with several preliminary results. First we need
more definitions. A number greater than 1 that is not a prime is a composite number. (lisa

unit.)

TheWell Ordering Theorem: A nonempty set of positive integers has aleast element.

Proof: Let Sbe aset of positive integers without aleast element. We will construct aset T of
positive integersnot in S. 1 must belong to T, because if it werein S, it would be the
least element. Now suppose 1, 2, 3through nwerein T (thisistheinduction hypothesis)
then n+ 1 cannot bein Sbecauseit would betheleast element. Hencen + 1 must belong

to T. Therefore T contains al the positive integers and S must be empty.

Theorem: If nisacomposite number then n has asome divisor, d, with1<d<n.
Proof: Sinceniscomposite, itisgreater than 1. If it hasno divisors other than 1 and nit would
be aprime. Any other divisor would be between 1 and n since no positive integer can

be divided (without remainder) by alarger integer.

Theorem: If nisacomposite number then n has a some prime divisor, p, with1 <p<n.
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Proof: From the previous theorem, we know that there isafactor d, with1l<d<n. Ifdisa
prime, we are finished. Otherwise d is a composite and we can employ the previous
theorem to find anew divisor f, such that f dividesd and 1 < f <d. Hencef dividesnand
1<f<n. Again, if fisaprimewe are done. Otherwise we can repeat the process as
until we reach aprime divisor of n. If wedid not find such a prime, we would have an
infinitedecreasing sequence of positiveintegers. Amongst other things, thisviolatesThe
Well Ordering Theorem.

Theorem: A composite number n, can be written as a product of primes.

Proof: Given apositive integer n, we know from the previous theorem that it can be written as
n = p,c, for some prime p,. If c,isaprime we are finished. Otherwise, we apply the
same theorem to c, to get the decomposition n = p,p,c, where p, isaprime. If c,isa
prime, we are finished. Again, just asin the proof of the last theorem we can continue
this process until we have aproduct of primes. Suppose otherwise, that after n stepswe
have n = p,p,..p,C, where c, is acomposite number greater than 1. Since each primeis
at least equal to 2, we then have n < 2™* which isabsurd (note p,p,..p,c, hasn + 1 terms
each at least 2).

Theorem: If pisaprimeand pjab (with aand b positive integers) then either pjJaor p|b or both.

Proof: If pfathen pLa (they are relatively prime). Then Euclid’s lemma applies and p|b.

Theorem: If pla,a,...a then for somei, 1 <i <k, pla.

Proof: Proof is by induction on k, the number of terms. If k = 1, the theorem is trivialy true.
If k = 2 then this was proven true in the last theorem. Suppose that the theorem is true
for k > 1 (or 2 since we have verified that). This is the induction hypothesis. Now
consider the case pla,&,...a.,,. We write this as p|(a,&...a)a.; Where we look at the
product as a product of 2 termsinstead of k + 1 terms. By the previous theorem either
pla.; or plaa...a. If pla.; is true we are finished. Otherwise pla,a,...a, and the
induction hypothesis applies.
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TheFundamental Theorem of Arithmetic: A composite number n, can bewritten asaproduct

of primes in one way and only one way other than the order of the terms.

Proof: Supposen=p,p,...p,, = 4,0,---0 Wherethetermsin both expressions are primes. Assume
h < k (otherwise rename the p’s as q’s and vice versa). Since p,|n then p,|q,0,...G,. By
our previous theorem p, must divide g, for somei. Sinceq isasoaprimep= g. We
factor p out of both products. We then do the same thing for p, through p,. This might
leave 1 = 1 implying that both products contained exactly the same terms. Note that it
also impliesthat both expressions have the same number of occurrences of each prime.
Theonly aternativewould be 1 = q,q,...q, where q.q,...q, isthe product of the remaining
primesfromtheright sideexpression. Clearly thisisimpossible, henceboth p,p,...p,and

0,0,---0, contain exactly the same primes.

Example Giventwo positive integers aand b, each can be written as a product of primes.

Ch

b= p,%p,"...p,*. Inthisrepresentation the primes

a= plcl pzcz--- Pn

p, through p, are distinct. We can give both numbers the same prime factors
because if, say, p, does not divide b, we simply make its exponent equal to O.
Now let us define m; as the minimum of ¢, and d,, and similarly we’ll define M,

as the maximum of ¢, and d.. You should be able to prove that the greatest

common divisor of aand b, (ab),is p,™p, ... p, " . Similarly you should be

able to prove that the least common multiple of a and b, [ab], is

lel pZMZ... pth . Asanumerica example consider a=18and b =60. The

prime factorizations are 18 = 2:3* and b = 223-5. Then (18,60) = 23 and
[18,60] = 22325,

15



Appendix A to Section 11
The Extended Euclidean Algorithm

(This is adapted primarily from Knuth’s The Art of Computer Programming, Vol I1.)*
Given a, b, return uy, u,, u; such that u,a+ ub= u;=(a b)

(uy, Uy, Ug) < (1,0, @)
(Vq, vy, v3) < (0, 1, b)
Whilev; # 0
g Uy/vg
(W, Wy, W) < (Uy, Uy, Ug) - q(Vy, Vy, V3)
(uy, Uy, Ug) < (Vy, Vy, Vy)
(V4, Vo, V3) < (W4, Wy, W)

Return (uy, u,, u,)

Recursive Version of Extended-Euclidean Algorithm

Given a, b, return u,, u,, u; such that u,a+ u,b= u,=(a b)

Extended-Euclidean(a, b)
If b=0thenreturn (1, 0, a) [exit]
(v4, V,, V3) < Extended-Euclidean(b, a mod b)
(Uy, Uy, Ug) < (Vy, vy - @bV, V3)

Return (uy, u,, uy)

Thisalgorithm uses matrix notation, specifically we havetheconventionthat d(a, b, c) =
(da, db, dc). Matrices will be covered in section 18. | used this convention (from Knuth)
becauseitis, I think, by far the clearest way to state the algorithm and to study the algorithm and
to prove that the algorithm works.

16



Appendix B to Section 11

An Inductive Proof of Bezout’s Lemma

Theorem: Given positive integers a and b, there exists integers x and y such that

ax+by=d=(ab).

Proof: The theorem is true if aand b each equal 1. The proof is by induction on s=a+ b.
Hence the theorem istrue for s= 2. Let the theorem by true for sequal to 2 up to n.* We want
to show that the theorem istruefor s=n+ 1. Supposethat a+b=n+ 1. We can assume that
a > b (otherwise exchange aand b). If a=k-b for some integer k then d = b and a solution is
givenby x =0andy = 1. Hence we can assume that ais not a multiple of b. Then by the
division algorithm there existsintegers g and r such that a=b-q + r whereb >r > 0. We have
that b +r <a+ b=n+ 1, hence by the induction hypothesis there exists integers u and v such
that ub + vr = (b, r). But (b, r) = (& b) = d (we proved this before: it is the key to the Euclidean
algorithm). We now havethat ub + vr = ub + v(a- bg) =d. Inother words, av + b(u - qv) =d;

thisgivesusx =v andy = (u - qv) and we are done.

Normally inductionisdoneonthepositiveintegersstarting at 1. However, it wasshown
in Section 6 that the same technique can be applied to the set of all integers greater than some
integer k. In the proof here, k = 2.
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Appendix C to Section 11

A Program For InversesMod n

It is simple to write a program into a modern programmabl e cal culator to find inverses
for multiplication mod n. Such calculators often haveabuiltin GCD function. If yoursdoesnot

have this use the Euclidean algorithm.

Program Inverse
I nput modulus n
Input value c
If GCD(n, c) # 1 Then
Output “No Inverse”;

Exit;
Xx<1
Repeat Whilel=1
X < X'C
If x-cmodn=1Then
Output x
Exit

Here iswhat the program looks like in my TI-86:

PROGRAM: Inverse
:Prompt nn

:Prompt cc

:If gcd(nn,cc)#1
:Then

:Display “Nope”
:Stop

‘Else

1-X

‘While 1==1
:mod(x*cc,nn)-1

:If mod(x* cc,nn)==1
:Then

:Disp x

:Stop

-end

-end

18



1.

Multiplication tables:

Zg 0 1 2 3 4 5
Off O 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 O 3 0 3 0 3
41 O 4 2 0 4 2
5| O 5 4 3 2 1

Z, 0 1 2 3 4 5 6
Off O 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 O 3 6 2 5 1 4
41 O 4 1 5 2 6 3
5| O 5 3 1 6 4 2
6 O 6 5 4 3 2 1

Notice that in Z, each non-zero element has an inverse.

The unitsin Z,, are those numbersrelatively primeto 12: 1,5, 7, 11. Hence we cannot
divideby 2, 3, or 8. Becareful: inZ,, each unitisitsown inverse, but in general thisis
not the case. If it were, then thingswould be much easier. 45=45=8. 47=47=4.
4/11=411=8.

ac = bc (mod n) implies n|(ac-bc); n|c(a-b). Let (c,n) =d.; n=dn’; c=dc. Wehave
dn'|dc'(a-b); n'|c'(a-b). But (n',c') = 1; hence by Euclid's lemman'|(a-b).

(9,12) = 3. Since 3 does not divide 5, this problem has no solution.

(9,12) = 3. Since 3 does divide 6, this problem has a solution. We divide the equation
by 3, to get 3x + 4y = 2. Solving for y first (arbitrarily; we could do x first) we have
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4y = 2 (mod 3). Adding 3 to the right hand side twice, we get 4y = 8 (mod 3). This
givesusy = 2 (mod 3). Hence, y =2 + 3t wheret isany integer. We substitute thisin
33X +4y=2toget 3x + 4(2 + 3t) =2. Thisyieldsx =-2 -4t. Againt isany integer,
however, once t is chosen for one variable it must be the same value for the other
variable.

(45,50) =5. Since 5 doesdivide 20, this problem hasasolution. Dividing the equation
by 5, we get 9x + 10y = 4. Solving for y, we have 10y = 4 (mod 9). Adding 9 to the
right hand side four times we get 10y = 40 (mod 9). Thisgivesusy = 4 (mod 9) or
y =4+ 9t. Substituting thisin 9x + 10y = 4, we get 9x + 10(4 + 9t) = 4. Thisyields
X =-4-10t.
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