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Linear Integer Equations,

Random Numbers,

The Fundamental Theorem of Arithmetic

Bezout’s Lemma

Let's look at the values of 4x + 6y when x and y are integers.  If x is -6 and y is 4 we get

zero.  If x is 1 and y is 1 we get 2.  In fact a little experimentation will convince you that you

can get all the even integers but only even integers. That is 4x + 6y generates the collection of

even integers.  We will denote this set by 2Z.1  Similarly 3Z would represent the collection of

all multiples of 3:  3Z = {...12,9,6,3,0,3,6,9,12,...}.  It turns out that if we look at

expressions of the from ax + by, or ax + by + cz where a, b and c are fixed integers (for example,

2x + 7y or 5x + 10y + 5z) we always get all multiples of some integer (which were defined

earlier as modules).  For example if we look at all values of 5x + 10y + 5z, we get 5Z which is

{...10,5,0,5,10,...}.  It would be very useful if you would take 15 minutes to see for yourself

what numbers you can generate with 4x + 6y and with  6x + 9y and with 4x + 7y.  This all can

summarized by one of the most useful theorems in discrete mathematics:

1Z in this context is used as it is generally used in abstract algebra to mean integer.  This
is from the German word for number, zahl.
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The equation ax  +  by  =  c where all letters are integers and a, b, and c

are known, is solvable if and only if (a, b)c.

Bezout's Lemma
This theorem is sometimes known as Bezout's lemma.  The theorem also holds true if we extend

it to more than 2 variables.  For example, 5x + 7y + 4z takes on the values GCD(5,7,4)Z = Z.

That is, 5x + 7y + 4z takes on the values of all integers.  Similarly 4x + 12y + 8z takes on the

values of GCD(4,12,8)Z = 4Z.

Example 4x + 12y = 8 is solvable because (4,12) = 4 and 48,  but 4x + 12y = 6 is not

solvable because 46 (4 does not divide 6).  3x + 6y = 15 has a solution because

(3,6) = 3 and 315.  Similarly, 8x + 10y = 29 does not have a solution because

(8,10) = 2 and 229.

If the proof is too difficult to follow, jump ahead to the next heading.  But first make sure you

understand what the theorem says.1  There is a second proof in the second appendix to this

section.

To prove Bezout's lemma, we need to prove our assertion above that expressions of the

form ax + by where a and b are fixed integers are all multiples of a single constant d.  Let d be

the smallest positive value taken on by expressions of the form ax + by.  Suppose that there is

a number c of the form ax + by that is not a multiple of d.  Suppose also that c is positive (if c

is negative then c is a positive value taken on by ax + by).  By the division algorithm we can

divide d into c so that we get a positive remainder less than d.  It can’t be zero because we

assume that d does not divide c.  That is, there is a q and an r such that d > r > 0 and c = dq + r.

1For those who have had abstract algebra, there is an easier route to Bezout's lemma.
First, note that with a and b fixed, the expression ax + by generates a subgroup of the integers
under addition.  Hence, this group must be cyclic.  Denote the positive generator of this set as
d.  It is easy to show that d divides both a and b.  It is also easy to show that any common divisor
of a and b divides d.  Hence d = (a,b).

2



Let x0, y0, x1, and y1 be the integers that satisfy ax0 + by0 = d and ax1 + by1 = c.  Then

a(x1  qx0) + b(y1  qy0) = ax1  qax0 + by1  qby0 = ax1 + by1  q(ax0 + by0) = c  qd = r.  That

is, r is a value taken on by ax + by.  But r is less than d and d is by definition the smallest positive

value of ax + by and we have a contradiction.  Hence ax + by takes on all of the multiples of

some number d and takes on only those values.

To finish the proof of Bezout's lemma, let us suppose that a, b, and c are fixed integer

values (they can be negative as well as positive).  We still denote the smallest positive value

achieved by ax + by as d.   Let (a,b) = g; then we can write a = a'g, and b = b'g.  We now have

that ax + by = a'gx + b'gy = g(a'x + b'y) = c.  Hence g must divide c.  Also it must divide d since

d is a value that c can have.  (If it doesn't, then ax + by = c has no solution.)  Now, two values

achieved by ax + by are a and b.  The first occurs when x = 1 and y = 0 and the second occurs

when x = 0 and y = 1.  Since d divides all values achieved by ax + by, it must divide a and b.

Hence it is a common divisor of a and b.  But since the largest common divisor of a and b, g,

divides d, then d and g must be equal.

Relatively Prime Integers: 

We say two integers, a and b, are relatively prime if they have no common positive factor

other than 1: GCD(a, b) = 1.  This is also denoted: ab.1  For example: 35, 49.  If n is any

positive integer, 1n and n(n+1).

1This notation was suggested in Concrete Mathematics: A Foundation for Computer
Science by Graham, Knuth and Patashnik, Addison-Wesley, 1989.
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Euclid's Lemma

Bezout's lemma gives us one of the most useful facts of number theory, which is known

as Euclid's lemma.

Proof:  By Bezout's lemma there is a solution to ax + by = 1.  We multiply both sides by c to get

acx + bcy = c.  a divides both terms on the left hand side because it is a factor of the first term

and we were given that abc.  Hence ac.

Division in Zn

Remember Zn is arithmetic modulo n in a slightly different guise.  In Zn we restrict

ourselves to the integers {0,1,2,...,n1}.  Once we are in Zn, these are the only integers that

exists.  In Zn addition, multiplication, and subtraction are very much like in the integers.  The

tricky operation is division.  We will define two kinds of elements in Zn.  The first are units.  x

is a unit if it has a multiplicative inverse.  That is, x is a unit if there exists an element x' such

that xx' = 1.  An element, x  0, is a divisor of zero if there exists an element x''  0 such

xx'' = 0.  Suppose that x has an inverse and is a divisor of zero.  Then there exists x' so that

xx' = 1 and there exists an element x such that xx = 0.   Multiply both sides of xx' = 1 by x''

so that x''xx' = x''; (x''x)x' = x''; 0x' = x''; 0 = x''.  But by definition x''  0.  This is a

contradiction, and it means that an element cannot be both a unit and a divisor of zero.

We will now show that every element in Zn, other than 0, is a unit or a divisor of zero.

Suppose that element a is relatively prime to n.  Then, from the preceding section, we know that

ax + bn = 1 has a solution.  Hence, ax  1 (mod n) has a solution and a is a unit.  Suppose that

element a is not relatively prime to n.  Then (a, n) = d with d > 1.  We can write a = a'd and

If abc and ab then ac.
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n = n'd with 1 < n' < n.  (Remember that in Zn, n = 0.)  Then an' = a'dn' = a'0 = 0.  Hence, in

Zn every non-zero element is a divisor of zero or is a unit.

If n is a prime number, then every non-zero number in Zn is a unit.  In such a case, we

have division.  We divide a by b, by multiplying a by the inverse of b which we denote here as

b1. We define a/b = ab1.  For example in Z7, division is well defined.  In Z7, 35 = 33 = 2;

24 = 22 = 4;  51 = 51 = 5.

If n is a composite number, on the other hand, then we have some elements that are

divisors of zero.  For example, in Z6, we can divide by 1 and 5 only and 2, 3, and 4 are divisors

of zero.

G   Exercise  1 Compare the multiplication tables of Z6 and Z7 to see why one system has

division and the other does not.

G   Exercise  2 In Z12, divide 4 by 2, 3, 5, 7,8, and 11.

Cancellation in Modulo n Arithmetic

It is now easy to see that if (c, n) = 1 that cancellation can be performed on

ac  bc (mod n).  Since c is relatively prime to n there exists c1 such that cc1  1 (mod n).

Multiplying both sides of ac  bc (mod n) by c1 we get ac c1  bcc1  (mod n) and then

a  c (mod n).  If (c, n)  1 then all bets are off.  For example, 24  21 (mod 6) but

4  1 (mod 6).  We can however state the following rule:

G   Exercise  3 Prove the general law of cancellation just given.  (Hint, this problem can

be solved by using Bezout's lemma and then Euclid's Lemma.)
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How to Solve ax  b (mod n)

Bezout's lemma will answer whether ax  b (mod n) has a solution for x (a, b, and n are

given).  By definition, ax  b (mod n) if nax  b.  But n divides ax  b is equivalent to saying

that there exists some integer c such that ax  b = cn.  In other words ax  b (mod n) has a

solution if and only if there is a solution to ax  cn = b.  By Bezout's lemma, ax - cn = b has a

solution (for x and c) if and only if (a, n)b.  One trick to solve ax  b (mod n) for x is to solve

ax  cn = b for x and c.  How to solve this is shown in the next section.  However, there is

another method which always works as well.

Example We want to find solutions to 2x  5 (mod 7).  It has a solution if (2, 7)|5, which

it does.  To find the solution, we add the modulus, which is congruent to 0, to the

right hand side.  This gives us 2x  12 (mod 7), and thus the solution is x = 6.

Example With the congruence 2x  5 (mod 6), (2, 6) = 2 which doesn’t divide 5.  Hence

there is no solution.

Example We want to solve 12x  18 (mod 42) which has a solution since (12, 42)|18.  The

first step to solving this problem is to perform cancellation.  Since 6 divides both

sides, we can reduce the problem to .
42

2 3 mod 3 (mod 7)
(6,42)

x
 

  
 

Now the general solution technique will be explained shortly.  But in this case

it goes as follows:  By adding 7 (which is congruent to 0) to the right side, we get

the solution x = 5.  By repeatedly adding 7 to 5 we get 6 solutions, within

modulus 42, which are: 5, 12, 19, 26, 33, 39.

Consider now the problem ax  b (mod p) where a, b, and p are given and p is prime.

If p does not divide a, then (a, p) = 1 and the problem has a solution.  If p does divide a, then a

is congruent to 0 and the problem then is equivalent to 0x  b (mod p) which leads to
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0  b (mod p).  That is if b is a multiple of p then any x will work otherwise there is no solution.

Example Consider ax  b (mod 7).  Since 7 is a prime, if a is not a multiple of 7 there is

a solution.  For example 2x  1 (mod 7) has the solution x = 4.  3x  1 (mod 7)

has the solution x = 5.  4x  1 (mod 7) has the solution x = 2.  5x  1 (mod 7) has

the solution x = 3.  6x = 1 (mod 7) has the solution x = 5.

All Solutions of ax  b (mod n)

Now let us get a little more ambitious.  Instead of just solving ax  b (mod n) we want

all of its solutions.  If k is a solution of ax  b (mod n), then k + rn (r any integer) is also a

solution.  This is because n  0 (mod n).  To make things interesting let us then concentrate on

the solutions with the range from 1 to n  1.  That is we want all solutions within the modulus.

Another way of looking at it is that we want all of the solutions of ax =  b in the number system

Zn.

Again: ax  b (mod n) has a solution if and only (a, n)|b.  In this case, that ax  b (mod

n) has a solution, we can cancel (a, n) out of a and b to get the new equation:

.  We rewrite this as  a’x  b’ (mod n’).  We now have that
a

a n
x

b

a n

n

a n( , ) ( , )
mod

( , )










n’ is relatively prime to a’ (because we have already divided out their common factor).  Using

Bezout’s Lemma we can show that by repeatedly adding n’ to the right hand side of a’x  b’

(mod n’) we can eventually solve for x.  Given a solution, x, of a’x  b’ (mod n’), it is a solution

of ax  b (mod n) but so is x + t (where t is any integer).  This follows from that fact
n

a n( , )

that and again that n  0 (mod n).  Our question then becomes, how manya
n

a n
n

a

a n
  
( , ) ( , )
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multiples are there of within the modulus n?  The answer is (a, n).  Putting all of this
n

a n( , )

together we get:

How Not to Solve ax  b (mod n): Multiplication Can be Evil

Consider the problem 9x  3 mod 12.  If we multiply both sides by 2, we get

6x  6 mod 12.  This yields x  1 mod 12, which is not a solution.  In fact using the technique

above the solutions within modulus 12 are 3, 7, and 12.  Note these are also solutions to

6x  6 mod 12.  But when we multiplied 9x  3 mod 12 by 2, we picked up anomalous solutions.

The reason, put simply, is that in mod 12 arithmetic there are divisors of zero, such as 3 and 4.

These complicate matters.  Solution by multiplication is safe then when n is a prime.  However,

if we are trying to solve ax  b (mod p) either a is a multiple of p or it is relatively prime to p.

In the first case any number x solves the equation.  In the second case, we know there is exactly

one solution within the modulus p.  Also, we know that a has an inverse mod p, a1, and

x  a1b (mod p).

ax  b (mod n) has a solution if and only if (a, n)|b.  In that

case, in the system zn there are (a, n) solutions.  If y is one

such solution, then the others are y + , y + 2 , and
n

a n( , )

n

a n( , )

so on (where n can be any integer).
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How to Solve ax + by = c

Bezout's lemma tells us whether ax + by = c has a solution, but it does not tell us how to

find it.  The following examples show two general technique that always work.  The first is

preferable for working by hand; the second is preferable for programming.  However, once we

have one solution, there are an infinite number of solutions.  It is easy to check that if ax + by = c

has a solution, x0 and y0, and if t is any integer, then another solution is given by x =  x0 + bt and

y = y0  bt.  However, this may not be the most general solution.  Remember that ax + by = c has

a solution if and only if (a, b)|c.  If (a, b) is greater than 1, we can divide it out of the equation

and yield a simpler equation.

Example We want to solve 13x + 21y  = 3.  This is solvable since (13, 21)3.  The best

way to solve it (by hand) is as follows:   We solve for x and y separately, and we

can do it in either order.  However, this time we will do y first for the reason that

we will then work with the smaller modulus, that is mod 13 instead of mod 21.

In terms of y, we have that 21y  3 (mod 13).  This can be written

8y 3 (mod 13).  We solve this as above, by adding the modulus, 13, to the right

hand side.  We get 8y  16.  This time we only have added the modulus once.

We have  y  2 (mod 13).  The second part of this method is to rewrite the last

relation as  y = 2 + 13t.  We then substitute this into the original equation to get

13x + 21(2 + 13t) = 3.  This reduces to 13x = 273t  39.  Hence x = -3 - 21t.

We can summarize this technique as follows:

Given ax + by = c.

1. If (a, b)c Then no solution [stop].

2. Divide ax + by = c by (a, b) to get Ax + By = C

3. Solve Ax  C (mod B) to get x = h + Bt {We use B to ensure a positive modulus.

4. Substitute x = h + Bt in Ax + By = C to solve for y {y will be of the form y = k - At.
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It is not hard to prove that

A second technique for solving equations of the form ax + by = c is to apply the

Euclidean algorithm to a and b, and then to work the algorithm backwards from the solution to

solve for x and y.  This is most easily shown by an example.  The general technique is the

Extended Euclidean Algorithm which is given in the first appendix to this section.

Example We would like to solve 7x + 9y = 5.  Since (7, 9) = 1 and since 1 divides 5 we

know that a solution exists.  Our problem is to find it.  We know in particular that

7x + 9y = 1 has a solution, so we first find that.  The secret is to use the Euclidean

algorithm on 7 and 9 and to write down the steps.  By retracing those steps

backwards we can solve the problem.  Using the Euclidean algorithm to find the

GCD of 7 and 9, we have:  9 = 71 + 2; 7 = 23 + 1; 2 = 21.  The method requires

that we take the second to the last equation, which in this case is 7 = 23 + 1.  We

rewrite it to solve for its remainder which will always be the GCD; in this case

we get 1 = 7 23.  We then work back to the first equation; for each equation we

solve for the remainder and substitute that in the earlier equation, until we have

solve for the  as a function of a and b.  In this case, there is only one previous

equation: 9 = 71 + 2.  Solving for the remainder we get 2 = 9  71.  Substituting

for 2 in 1 = 7  23, we get 1 = 7 (9  71)3.  We want to rearrange this to give

our GCD which is 1 in terms of 7 and 9.  We get:  1 = 47  39.  To solve our

original problem, we multiply both sides of this by 5 to get:  5 = 207  159.

Hence the solution to the problem is x = 20 and y = 15.  The general solution

is x = 20 + 9t and y = 15  7t.

Given the problem ax + by = c.  If x = u and y = v are any pair of solutions, then the general

solution is of the form:  andx u
b

a b
t 

( , )
y v

a

a b
t 

( , )
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The same method shown in the last two examples can be extended to solve problems like

6x + 10y + 15z = 7.  Bezout's lemma can be extended in the obvious manner to show whether

a solution exists, and then the above technique for finding the solution can be extended as well.

G   Exercise  4 Solve 9x + 12y = 5.

G   Exercise  5 Solve 9x + 12y = 6.

G   Exercise  6 Solve 45x + 50y = 20.

Generation of Random Numbers

Random number generation on computers means generating a sequence of numbers that

seem random but are not.  There is one technique that has been dominant since the early days of

computers and is due to the eminent number theorist D. H. Lehmer.  Although many texts give

us this algorithm, I think that I can make it clearer by using a simple example.

First let me tell you a simple fact that is not easy to prove, and which we will not prove,

but is easy to understand.  If n is a prime, then we know Zn has division.  The non-zero elements

are all units.  It is to prove that the product of units is always a unit.  That is if x and y are units

with inverses x' and y', then y'x' is the inverse of xy since xyy'x' = x(yy')x' = x1x' = xx' = 1.  The

remarkable fact, which I ask you to accept on faith, is that when n is prime the units of Zn  can

all be written as powers of a single unit, which is known as a primitive root modulo n.

The Lehmer algorithm generates a repeating cycle of integers.  These integers are often

rewritten as uniform variates.  That means real numbers between 0 and 1 such that each number

is equally likely.1  The algorithm requires a prime p and then generates a cycle of p  1 integers.

The most common prime used is 231  1.  This means that a cycle of 231  2 integers is generated,

with 231  2 = 2,147,483,646.

Example We will illustrate the algorithm by using p = 11.  This of course is totally useless

for generating random numbers but illustrates the algorithm perfectly well.  We

1Clearly we generate a finite subset of the interval from 0 to 1 but the object is to appear
like a uniform sample from that interval.



need to find a primitive root in Z11.  That is we need a unit that when multiplies

by itself gives all ten units of Z11.  It is not simple to find such a unit.  In the case

of Z11 though there are only 10 candidates and we can find one by trial and error.

Such a primitive root is 8.  If we multiply 8 by itself we get 9.  If we multiply 9

by 8 we get 6, and if we multiply 6 by 8 we get 4.  The whole sequence is 8, 9,

6, 4, 10, 3, 2, 5, 7, 1.  This is a pseudo-random sequence of length 10 and it

contains each of the integers 1 through 10 just once.  To turn it into a uniform

sequence we divide each integer by 11.  This gives us the sequence .727, .818,

.545, .365, .909, .273, .182, .455, .636, .091.

The preceding algorithm of Lehmer's is known as the multiplicative linear congruential

generator.  It can be summarized as follows:

1 Start with a large prime p and a primitive root mod p denoted by r.

2 Choose an integer, x, between 0 and p  1.

3 Compute x  xr (mod p).

4 Output x

5 Go to 3.

Notice that the algorithm as stated does not terminate.  In reality it terminates when you

have computed the last number that you want.  If it is your aim to produce a sequence of uniform

variates, replace line 4 by: Output xp.  Frequently, the algorithm is made slightly more

complex by adding an additive constant.  The algorithm would then be stated:

1 Start with a large prime p, a primitive root mod p denoted by r, and an additive constant

c, such that 0 < c < p.

2 Choose an integer, x, between 0 and p.

3 Compute x  xr + c (mod p).

4 Output x

5 Go to 3.

This algorithm is called a mixed linear congruential generator.
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The Fundamental Theorem of Arithmetic

Earlier we defined relatively prime, but we have not defined primes yet (they did show

up in the section on induction but that was an example that you could defer if necessary).  A

positive integer is a prime if it is greater than 1, and if its only positive divisors are itself and one.

For example, the first ten primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.  Students often wonder why

1 is excluded as a prime.  There are many reasons.  A simple reason is this.  If you know that a

number n is divided by some prime p, that tells you something about n.  However, knowing that

1 divides n tells you only that n is an integer, which is not information since we are restricting

ourselves to integers.  The Fundamental Theorem of Arithmetic says that each positive integer

can be written in one and only one way as a product of primes except for the order of the

numbers.  If we were to write the primes in order of increasing size then the order would be

unique.  We will have to build up to the theorem with several preliminary results.  First we need

more definitions.  A number greater than 1 that is not a prime is a composite number.  (1 is a

unit.)

The Well Ordering Theorem:  A nonempty set of positive integers has a least element.

Proof: Let S be a set of positive integers without a least element.  We will construct a set T of

positive integers not in S.  1 must belong to T, because if it were in S, it would be the

least element.  Now suppose 1, 2, 3 through n were in T (this is the induction hypothesis)

then n + 1 cannot be in S because it would be the least element.  Hence n + 1 must belong

to T.  Therefore T contains all the positive integers and S must be empty.

Theorem: If n is a composite number then n has a some divisor, d, with 1 < d < n.

Proof: Since n is composite, it is greater than 1.  If it has no divisors other than 1 and n it would

be a prime.  Any other divisor would be between 1 and n since no positive integer can

be divided (without remainder) by a larger integer.

Theorem:   If n is a composite number then n has a some prime divisor, p, with 1 < p < n.
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Proof: From the previous theorem, we know that there is a factor d, with 1 < d < n.  If d is a

prime, we are finished.  Otherwise d is a composite and we can employ the previous

theorem to find a new divisor f, such that f divides d and 1 < f < d.  Hence f divides n and

1 < f < n.  Again, if f is a prime we are done.  Otherwise we can repeat the process as

until we reach a prime divisor of n.  If we did not find such a prime, we would have an

infinite decreasing sequence of positive integers.  Amongst other things, this violates The

Well Ordering Theorem.

Theorem: A composite number n, can be written as a product of primes.

Proof: Given a positive integer n, we know from the previous theorem that it can be written as

n = p1c1 for some prime p1.  If c1 is a prime we are finished.  Otherwise, we apply the

same theorem to c1 to get the decomposition n = p1p2c2 where p2 is a prime.  If c2 is a

prime, we are finished.  Again, just as in the proof of the last theorem we can continue

this process until we have a product of primes.  Suppose otherwise, that after n steps we

have n = p1p2..pncn where cn is a composite number greater than 1.  Since each prime is

at least equal to 2, we then have n  2n+1 which is absurd (note p1p2..pncn has n + 1 terms

each at least 2).

Theorem:  If p is a prime and p|ab (with a and b positive integers) then either p|a or p|b or both.

Proof:  If pa then pa (they are relatively prime).  Then Euclid’s lemma applies and p|b.

Theorem:  If p|a1a2...ak then for some i, 1  i  k, p|ai.

Proof: Proof is by induction on k, the number of terms.  If k = 1, the theorem is trivially true.

If k = 2 then this was proven true in the last theorem.  Suppose that the theorem is true

for k > 1 (or 2 since we have verified that).  This is the induction hypothesis.  Now

consider the case p|a1a2...ak+1.  We write this as p|(a1a2...ak)ak+1 where we look at the

product as a product of 2 terms instead of k + 1 terms. By the previous theorem either

p|ak+1 or p|a1a2...ak.  If  p|ak+1 is true we are finished.  Otherwise p|a1a2...ak and the

induction hypothesis applies.
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The Fundamental Theorem of Arithmetic: A composite number n, can be written as a product

of primes in one way and only one way other than the order of the terms.

Proof: Suppose n = p1p2...ph = q1q2...qk where the terms in both expressions are primes.  Assume

h  k (otherwise rename the p’s as q’s and vice versa).  Since p1|n then p1|q1q2...qk.  By

our previous theorem p1 must divide qi for some i.  Since qi is also a prime p =  qi.  We

factor p out of both products.  We then do the same thing for p2 through ph.  This might

leave 1 = 1 implying that both products contained exactly the same terms.  Note that it

also implies that both expressions have the same number of occurrences of each prime.

The only alternative would be 1 = qaqb...qr where qaqb...qr is the product of the remaining

primes from the right side expression.  Clearly this is impossible, hence both p1p2...ph and

q1q2...qk contain exactly the same primes.

Example Given two positive integers a and b, each can be written as a product of primes.

.  In this representation the primesa p p p b p p pc c
h

c d d
h

dh h 1 2 1 2
1 2 1 2... ...

p1 through ph are distinct.  We can give both numbers the same prime factors

because if, say, p1 does not divide b, we simply make its exponent equal to 0.

Now let us define mi as the minimum of ci and di, and similarly we’ll define Mi

as the maximum of ci and di.  You should be able to prove that the greatest

common divisor of a and b, (a,b), is .  Similarly you should bep p pm m
h

mh

1 2
1 2 ...

able to prove that the least common multiple of a and b, [a,b], is

.  As a numerical example consider a = 18 and b = 60.  Thep p pM M
h

Mh

1 2
1 2 ...

prime factorizations are 18 = 232 and b = 2235.  Then (18,60) = 23 and

[18,60] = 22325.
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Appendix A to Section 11

The Extended Euclidean Algorithm

(This is adapted primarily from Knuth’s The Art of Computer Programming, Vol II.)1

Given a, b, return u1, u2, u3 such that  u1a + u2b =  u3 = (a, b)

(u1, u2, u3)  (1, 0, a)

(v1, v2, v3)  (0, 1, b)

While v3  0

qu3/v3

(w1, w2, w3)  (u1, u2, u3) - q(v1, v2, v3)

(u1, u2, u3)  (v1, v2, v3)

(v1, v2, v3)  (w1, w2, w3)

Return (u1, u2, u3)

Recursive Version of Extended-Euclidean Algorithm

Given a, b, return u1, u2, u3 such that  u1a + u2b =  u3 = (a, b)

Extended-Euclidean(a, b)

If b = 0 then return  (1, 0, a) [exit]

(v1, v2, v3)  Extended-Euclidean(b, a mod b)

(u1, u2, u3)  (v2, v1 - a/bv2, v3)

Return (u1, u2, u3)

1This algorithm uses matrix notation, specifically we have the convention that d(a, b, c) =
(da, db, dc).  Matrices will be covered in section 18.  I used this convention (from Knuth)
because it is, I think, by far the clearest way to state the algorithm and to study the algorithm and
to prove that the algorithm works.
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Appendix B to Section 11

An Inductive Proof of Bezout’s Lemma

Theorem: Given positive integers a and b, there exists integers x and y such that

ax + by = d = (a, b).

Proof: The theorem is true if a and b each equal 1.  The proof is by induction on s = a + b.

Hence the theorem is true for s = 2.  Let the theorem by true for s equal to 2 up to n.1  We want

to show that the theorem is true for s = n + 1.  Suppose that a + b = n + 1.  We can assume that

a  b (otherwise exchange a and b).  If a = kb for some integer k then d = b and a solution is

given by x = 0 and y = 1.  Hence we can assume that a is not a multiple of b.  Then by the

division algorithm there exists integers q and r such that a = bq + r where b > r > 0.  We have

that b + r < a + b = n + 1, hence by the induction hypothesis there exists integers u and v such

that ub + vr = (b, r).  But (b, r) = (a, b) = d (we proved this before: it is the key to the Euclidean

algorithm).  We now have that ub + vr = ub + v(a  bq) = d.  In other words, av + b(u  qv) = d;

this gives us x = v and y = (u  qv) and we are done.

1Normally induction is done on the positive integers starting at 1.  However, it was shown
in Section 6 that the same technique can be applied to the set of all integers greater than some
integer k.  In the proof here, k = 2.
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Appendix C to Section 11

A Program For Inverses Mod n

It is simple to write a program into a modern programmable calculator to find inverses

for multiplication mod n.  Such calculators often have a built in GCD function.  If yours does not

have this use the Euclidean algorithm.

Program Inverse
Input modulus n
Input value c

If GCD(n, c)  1 Then
Output “No Inverse”;
Exit;

x  1
Repeat While 1 = 1

x  xc
If xc mod n = 1 Then

Output x
Exit

Here is what the program looks like in my TI-86:

PROGRAM: Inverse
:Prompt nn
:Prompt cc
:If gcd(nn,cc)1
:Then
:Display “Nope”
:Stop
:Else
:1x
:While 1==1
:mod(x*cc,nn)1
:If mod(x*cc,nn)==1
:Then
:Disp x
:Stop
:end
:end
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1. Multiplication tables:

Z6 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Z7 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

Notice that in Z7 each non-zero element has an inverse.

2. The units in Z12 are those numbers relatively prime to 12:  1, 5, 7, 11.  Hence we cannot
divide by 2, 3, or 8.  Be careful: in Z12 each unit is its own inverse, but in general this is
not the case.  If it were, then things would be much easier. 45 = 45 = 8.  47 = 47 = 4.
4/11 = 411 = 8.

3. ac  bc (mod n) implies n(acbc);  nc(ab).  Let (c,n) = d.; n = dn'; c = dc'.  We have
dn'dc'(ab); n'c'(ab).  But (n',c') = 1; hence by Euclid's lemma n'(ab).

4. (9,12) = 3.  Since 3 does not divide 5, this problem has no solution.

5. (9,12) = 3.  Since 3 does divide 6, this problem has a solution.  We divide the equation
by 3, to get 3x + 4y = 2.  Solving for y first (arbitrarily; we could do x first) we have
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4y  2 (mod 3).  Adding 3 to the right hand side twice, we get 4y  8 (mod 3).  This
gives us y  2 (mod 3).  Hence, y = 2 + 3t where t is any integer.  We substitute this in
3x + 4y = 2 to get 3x + 4(2 + 3t) = 2.  This yields x = -2 -4t.  Again t is any integer,
however, once t is chosen for one variable it must be the same value for the other
variable.

6. (45,50) = 5.  Since 5 does divide 20, this problem has a solution.  Dividing the equation
by 5, we get 9x + 10y = 4.  Solving for y, we have 10y  4 (mod 9).  Adding 9 to the
right hand side four times we get 10y  40 (mod 9).  This gives us y  4 (mod 9) or
y = 4 + 9t.  Substituting this in 9x + 10y = 4, we get 9x + 10(4 + 9t) = 4.  This yields
x = -4 -10t.
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