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Applications of Probability

The Binomial Distribution

The binomial distribution is as important as any distribution in probability.  It is quite

simply the description of the outcome of throwing a coin n times.  The binomial coefficient

graph of Section 15 is reproduced here as Figure 1 with only slight modification.  Each node

is an intersection.  We start at the top node which is on level 0 and proceed to higher levels by

making left and right turns at each level.  Any intersection on a particular level can be

characterized by the number of left turns it takes to get there.  For example, the second

intersection from the left on level 3 is denoted by the binomial coefficient  because it is on

the third level and it takes 2 left turns to get there (out of 3 turns).  In Chapter 5 we equated this

coefficient with the number 3, because there are exactly 3 ways to get to that intersection.  That

is, there are 3 ways to go from the node on level 0 to the node  on level 3, depending on

whether you go left-left-right, left-right-left, or right-left-left.  
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Figure 1  The Binomial Graph With Probabilities

Now suppose we change the problem.  At any given node we go left with probability p,

and right with probability q, where p + q = 1.  The question is now, not  in how many ways can

we get to node  (also denoted earlier as [3,2])  but what is the probability of reaching there
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1The Bernoullis were an eighteenth century family of mathematicians spanning three
generations.  They are the greatest family of mathematicians ever (and were frequently at one
another's throats).  One test of the true mathematical historian is knowing which Bernoulli is
which.  (I flunk.)

2Notice that I saved it until the second example!
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Throughout this chapter, we make use of the properties of independence.  Suppose that I

make a fair toss of a coin whose probability of heads is .8 and of tails is .2.  (Obviously,

the coin is unfair although the toss isn't.)  If I do two throws, the probability that I throw

heads and then throw tails is .8A.2 = .16.  I can multiply the probabilities to get their joint

probability because the throws are independent.  This is the third property of independence

given earlier.

(after starting at the intersection at the top)?  Let us consider the route, left-left-right.  It has

probability of pApAq = p2q of occurring.  Similarly, the route left-right-left has probability

pAqAp = p2q of occurring.  The third route, right-left-left, has probability qApAp = p2q of occurring.

That is, each route has the same probability of occurring, and there are three possible routes, so

the total probability of reaching node  after starting at the top is   In

general, the probability of reaching node is   

Any left-right, on-off, yes-no, success-failure type of experiment is known as a Bernoulli

experiment or Bernoulli trial.1  A sequence of identical and independent Bernoulli trials is a

binomial experiment.  The first such example in virtually every textbook is flipping a coin four

times.2  Let us suppose that my coin is biased with probability of heads being .6 (completely to

my own surprise).  We might ask the question, if I flip the coin four times, what is the

probability of exactly 2 heads?  To qualify as a binomial experiment each throw must be

independent of each other throw.  I can achieve this by doing fair throws (although the coin itself
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Formula 1 The Binomial Probability Formula

is not fair).  In binomial experiments, we traditionally speak arbitrarily of one result as a success

and the other as a failure.  Let us call heads a success.  In the language of probability and

statistics, we are asking for the probability of exactly two successes in 4 Bernoulli experiments

where probability of success is .6.  There are  ways to pick 2 out of 4 tosses as heads.

These are:

Í HHT

Í THT

Í HTH

Í TTH

Í THT

Í HTH

Í HTT

Í THH

Each of these combinations has probability .62.42, so that the total probability of throwing

exactly 2 heads is 6A.62.42 = .3456.  

In n independent Bernoulli trials, the probability of exactly m successes,

where p is the probability of success and q = 1 ! p is the probability of

failure, is:
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Note that if we use the binomial expansion formula (Chapter 5) to evaluate  each term

is of the form .  The sum of the terms is 1 since p + q = 1.

Example If Repunzel does 100 fair flips of a fair coin, we know by considerations of

symmetry that the most likely outcome is 50 heads.  However, exactly how likely

is that?  By the binomial probability formula the answer is  and,

using a calculator this turns out to be roughly .079589.  Note that when p = .5 the

binomial formula simplifies to .

G   Exercise  1 Prove the assertion that was just given. 

 

Example Suppose that we flip a coin, whose probability of heads is .9, 10 times.  We could

ask what is the probability of 2 or more heads.  To do this, we could, use the

binomial formula 8 times to calculate the exact probability of 2 heads occurring,

3 heads occurring, though 10 heads occurring, and then add up the answers.  A

simpler way of answering the problem is to realize that the event that 2 or more

heads occur, is the complement of the event that 0 or 1 heads occur.  (Remember:

the complement of X is not X.)  The probability of 0 or 1 heads occurring is:

and this is 1A.110 + 10A.9A.19 = .0000000091.  The

probability of the complement of 0 or 1 heads occurring is 1 ! .0000000091 =

.9999999909.  



Chapter 26 out of 37 from Discrete Mathematics for Neophytes:  Number Theory, Probability, Algorithms, and Other Stuff by J.  M.  Cargal

1The best way to calculate a binomial probability table is by using a spreadsheet.  The
formula conventions in spreadsheets are ideal for recursion.  
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For the following exercises assume that we have tossed a coin 7 times, where the

probability of tossing heads is .6.  Use the binomial probability formula for all exercises.  

G   Exercise  2 What is the probability of  tossing 7 heads?

G   Exercise  3 What is the probability of  tossing 0 heads?

G   Exercise  4 What is the probability of  tossing 4 heads?

G   Exercise  5 What is the probability of  tossing 5 heads?

G   Exercise  6 What is the probability of  tossing 4 or 5 heads?

G   Exercise  7 What is the probability of  tossing 0 or 1 heads?

G   Exercise  8 What is the probability of  tossing 2 or more heads?

G   Exercise  9 What is the probability of tossing 7 heads given that you toss 2 or more

heads?

G   Exercise  10 What is the probability of tossing 4 or 5 heads given that you toss 2 or

more heads?

The Recursive Binomial Probability Formula

Remember, that earlier we had a recursive formula for binomial coefficients.  It was:

with C(n,0) = C(n,n) = 1.  It is reasonable to expect that

this formula can be extended for binomial probabilities.  This is particularly important if

calculating a table of binomial probabilities; it enables one to calculate each subsequent

probability with a minimum of work.1  Let us denote the probability of r successes in n Bernoulli

trials, each with probability of success, p, by B(r; n, p).  Then:
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Formula 2 The Recursive Formula for Binomial Probabilities

The Geometric Distribution
A probability distribution closely related to the binomial distribution is the geometric

distribution.  In both cases you are performing repeated Bernoulli trials.  That is, you are doing

repeated independent identical experiments with two outcomes.  Typically, you arbitrarily call

one outcome success and the other failure.  In the binomial case, you do n experiments.  The

binomial probability formula tells you the probability of exactly m successes in those n

experiments.  In the geometric case, you do not know how many experiments you are going to

do.  You simply keep doing experiments until you have one success.  The  geometric probability

distribution gives the probability that success occurs on the nth trial.

As before let us denote the probability of a success by p.  Then the probability of failure

is q = 1 ! p.  Since the experiments are independent, the probability that the first r experiments

will be failures is qr.  The probability that the first success will occur on experiment n is qn!1p.

This might be clearer from a concrete example.  Suppose, that our experiment is to toss a die

until we get a 6.  The question that we want to answer is:  what is the probability  that the first

6 occurs on the nth throw.  Clearly the probability that the first throw is a success is 1/6.  The

probability that the first success occurs on the second throw is the probability that the first throw

is a failure (5/6) times the probability that the second throw is a success (1/6).  The probability

that the first success occurs on the third throw is the probability that the first and second throws

are failures (5/6)A(5/6) = (5/6)2 times the probability that the third probability is a success (1/6)

giving an overall probability of (5/6)2(1/6).  We can see that the probability that the first success

occurs on trial n, is , as given by the formula above.  Note that by this line of
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reasoning we can conclude that the probability that first success occurs after throw n is .

That is: The case that the first success occurs after throw n, is precisely the case that the

first n throws are failures.

If performing Bernoulli experiments, with probability of success p, the

probability that the first success occurs on trial n is:

Formula 3 The Geometric Distribution

For the following exercises, assume that you are doing a fair flip of a fair coin:

G   Exercise  11 What is the probability that the first heads occurs on throw 3?

G   Exercise  12 What is the probability that the first heads occurs on throw 4?

G   Exercise  13 What is the probability that the first heads occurs on throw n?

G   Exercise  14 What is the probability that the first heads occurs after throw n?

Expected Values

Expected values are both a simple and meaty subject.  (Pay close attention.)  A recurring

problem in math education, is that students underestimate those concepts that seem easy (and

often are easy).  This is one of those concepts.  
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Given n exclusive and exhaustive outcomes, x1, x2, x3,  ... , xn each with

probability pi the expected value of the xi's is given by:

E(xi) = jxiApi = x1p1 + x2p2 + ... + xnpn

That is, each outcome is multiplied by its probability and their sum is

the expected value.

Formula 4 The Definition of Expected Value

Figure 2  A "Fair" Dice Game

Expected value is a concept closely related to arithmetic average.  You can think of the

expected value of a situation to be its average outcome.  Suppose we have a collection of n

exclusive and exhaustive outcomes, x1, x2, x3,  ... , xn.  Suppose that the probability of each

outcome xi is pi.  Since the outcomes are exclusive and exhaustive, we have p1 + p2 + p3 + ... +

pn = 1.  

Consider a simple game played by Fred and Repunzel.  They throw a fair die.  Each time

they throw a 1 through 5 Fred pays Repunzel $1, and every time they throw a 6, Repunzel pays
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Fred $5.  There game is represented by the graph in Figure 2.  The graph shows six outcomes,

but it is simpler to view the game as having two outcomes, F, Fred wins, and R, Repunzel wins.

 We have P(F) = 1/6 and P(R) = 5/6.  From Repunzel's viewpoint, the  expected outcome, or

the expected value of the outcome is:

The expected value of the game for Repunzel (and also for Fred) is 0, so this is what we

call a fair game.  In the long run the average winnings for Repunzel should be $0.  This is

exactly what we expect if we think about it.  Consider the case where Repunzel and Fred play

60 games.  Repunzel should win 50 times for $50 and he should lose 10 times for !$50 and a

total of 0$.  

If we make a fair throw of a fair die, the expected value of the outcome is:

(1/6)A1 + (1/6)A2 + (1/6)A3 + (1/6)A4 + (1/6)A5 + (1/6)A6 = 3.5.  Again, 3.5 is the average outcome

if we throw a die many times.  On the other hand, the expected value 3.5 cannot occur on any

particular throw.  Similarly, if we look at the fair flip of a fair coin, if the value of heads is 1 and

of tails is !1 then the expected outcome is 0.  If however, we decide to record heads as 1 and

tails as 0, then the expected outcome is ½.  

It is easy to say that in an investment we would like an expected value to be positive.

Why make an investment with negative expected value?  On the other hand, the expected value

should only be viewed as one measure, and its interpretation can be oversimplified.  For

example, when we purchase insurance, the expected value is negative or otherwise the insurance

company could not make a profit.  We accept the negative expected value in order to reduce our

anxiety and the probability of suffering a catastrophic loss..
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For the following exercises assume that we are doing a fair throw of two die.

G   Exercise  15 What is the expected sum of the die?
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2It turns out that the other types of bets in American roulette all have the same expected
values.
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G   Exercise  16 Suppose one die is red and the other is green.  Let us call the value of the

red die minus the value of the green die the difference.  What is the

expected value of the difference?  What is the expected value of the

absolute value of the difference?  (If the difference is !2 then the

absolute value of that difference is 2.)

G   Exercise  17 What is the expected value of the maximum of the two die?  What is the

expected value of the minimum of the two die?  For example if one die

is 3 and the other is 5, their minimum is 3 and their maximum is 5.

G   Exercise  18 What is the expected value of the product of the two die?

Example Usually when people take a multiple choice test, they guess answers they do not

have time to read.  If the test has four answers per problem the test taker can

expect to gain ¼ a point for each guessed answer.  Therefore some tests penalize

the test-takers for incorrect answers.  For each incorrect answer, x points are

taken off, where x is chosen so that the expected value for guessed problems is

0.  Therefore x must satisfy: .  Solving for x, we get x = a

points.  

Example1 American roulette is a sucker game.  When you bet on a number, your chance of

hitting the number is 1/38 but you pay-off is only $35.  Hence the expected loss

on each bet is (1/38)A35 + (37/38)A(!1) = !.0526.  That is you lose 5.26 cents on

each dollar bet.2  Mutt plays the tables everyday.  He always bets on number 00
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exactly 36 times.  His buddy Jeff wants to cure Mutt of this habit, so he makes

a side wager with Mutt.  He bets Mutt $20 that at the end of the 36 bets he is

behind.  Our question is, what is Mutt's expected return on the $36 he bets each

day when we factor in the side bet?  His expected return against the roulette table

is 36 times his return for each bet; that is 36A(!.0526) = !1.8947.  His average

outcome per day against the tables is -1.89$.  But if he loses on the day he owes

Jeff $20 otherwise Jeff owes him.  Note that if Mutt wins exactly one bet against

the table, he comes out ahead since he keeps the dollar he bet and he makes $35.

He loses the other $35 and he is up by exactly one dollar.  To come out behind

he must lose all 36 bets, and the probability of that is (37/38)36 = .3829.  So there

is only a .38 probability that Mutt pay Jeff 20$ and there is a .62 probability that

Jeff pays Mutt $20.  The total expected return for Mutt is -

1.89 + .38(!20) + .62(20) = 2.79.  Hence, before the side-bet, Mutt could expect

to lose 1.89$ per day.  But with the side-bet,  he can expect to average $2.79

profit per day.

An Example of a Great Betting Opportunity1

Let us suppose that we have an uncommonly good opportunity.  We have $100 and we

can bet as often as we like as follows:

Each bet is independent of the other bets and has a 50% of winning and losing.  If a bet

is won, it returns $1.40, profit,  for each dollar bet.  In other words if you have $1 and

you bet it and win, then you have $2.40.  If you lose, you lose the money bet.  When you

bet, you must bet one-half of your capital.  For example, your first bet would be $50. 
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Let us ask, from an expected values point of view, how many bets should we make?  If

we have $X, we bet ½X and we end up with either ½X or X + ½XA1.40 = X(1.7).  The expected

outcome of a bet is (in terms of our capital X) E(X) = ½A½X + ½A(1.7)X = 1.1X.  In English:

our expected capital is a 50% probability of reducing our capital by one-half and a 50% of

increasing our capital by 70%.  The expected outcome is that we have increased our capital by

10%.  Notice, that this is independent of the size, X, of our capital.  Hence, if we think only in

terms of expected values, we should bet as often as we can.  If we bet n times, starting with $X,

our expected capital would be (1.1)nAX.  For example, starting with $100, if we make 200 bets,

the expected size of our stash after making the bets is (1.1)200A100 = $18,990,527,646.  

It seems, from an expected values point-of-view, that the bet is a fantastic opportunity.

Be assured that the preceding analysis is correct as far as it goes.  That is, suppose we start with

$100 and do 200 bets, and suppose further we do this 500,000 times, starting with $100 each

time (we have time to spare).  Then the arithmetic average of the outcomes would be very close

to $18,990,527,646.  There has been no trick; this is correct.

Let us look at the case where we make 100 bets and we win 50, which of course is the

most likely outcome.  We start with $100 and we win fifty bets, each of which in effect

multiplies our capital by 1.7 and we lose fifty bets, each of which in effect multiplies our capital

by ½.  Notice, that if we multiply a number, X, by the numbers 1.7 and ½, it doesn't matter in

which order we multiply.1  Therefore, in this case, we start with $100 and we wind up with

100A(1.7)50(.5)50 = 100A(1.7A.5)50 = 100A(.85)50.  That is a win and a loss is the same as multiplying

by 1.7 and .5 for a net effect of multiplying by .85.  If this happens fifty times we are multiplying

by (.85)50 = .00029576.  After starting with $100 we wind up with ¢.03 (not 3 cents, but .03

cents!).

To recapitulate, we have a betting opportunity with an enormous expected value or

average outcome, but in the most likely case, we wind up totally broke.  (What the &%^& is
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going on?)  Precisely what is the probability that we come out ahead if we make 100 bets?1

Since each win multiplies our capital by 1.7 and each loss multiplies our capital by .5; to break

even, we need to end up multiplying by 1.  That is, we need to solve:  (1.7)r(.5)100!r = 1  where

r is the number of bets out of 100 we must win to break even.  To solve this for r, we take the

logarithm of both sides (any base) to get log(1.7)r + log(.5)100!r = 0  (since log(1) = 0).

rAlog(1.7) + (100!r)Alog(.5) = 0  (since log(xy) = yAlog(x)).  rAlog(1.7) ! (100!r)Alog(2)  (since

log(½) = !log(2)).  rA(log(1.7) + log(2)) = 100Alog(2)  (by rearrangement).  Solving for r, we get

r = 56.6.  That is, out of 100 bets we need to win more than 56 just to come out ahead2 and the

chance of that is just under 10%.  

The explanation for the above is quite simple.  When we come out ahead we come out

so far ahead that it makes our average outcome huge.  If we were only to make 2 bets (starting

with $100) we have the following equally likely outcomes:

< Win-Win: 100A1.7A1.7 = 289

< Win-Loss: 100A1.7A.5 = 85

< Loss-Win: 100A.5A1.7 = 85

< Loss-Loss: 100A.5A.5 = 25

We come out ahead only once in four times but our ?average” outcome is

¼(289) + ¼(85) + ¼(85) + ¼(25) = ¼(289 + 85 + 85 + 25) = 121: a profit of $21.  

An important Modification of the Great Betting Opportunity

Suppose that we take the preceding bet and allow a modification.  We will allow you to

bet whatever proportion of your capital you like.
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Analysis will show that the higher the proportion you bet, the higher the expected

return.  Also, the higher the proportion you bet, the lower the probability that you

come out ahead.  

Suppose that we have the above betting opportunity:  50% chance of winning each bet, and

$1.40 profit on each bet won.  Suppose further that this time you can bet whatever

proportion of your capital you choose.  What should you do?  This is one example, out of

many, that come up in probability, where there is no correct answer.  Each person can have

their own philosophy and there is no general mathematical solution to who is correct.  If

it were my betting opportunity, and I were starting with only $100, I would start

conservatively betting no more than 20% of my capital.  If and when my capital grew, I

might let the proportion edge up to 27%.

In the extreme case, you bet 100% of your capital.  In 100 bets, the only way that you can come

out ahead is if you win every bet.  The probability of that is (.5)100 = 7.8886×10!31.  However,

in that one case we make $100A(2.4)100.  The expected value is then (.5)100A100A(2.4)100 =

100A(1.2)100 = 8,281,797,452.20.  At this extreme, the probability of coming out ahead is

absolutely insignificant, but on the average we make a huge fortune.  

We can ask, what is the proportion of resources we must bet to have a 50% chance of

coming out ahead?  Using similar techniques to those above, the answer is 28.57%.1 
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A Technique for Doing Statistics Problems
(This section is optional)

This book is intended to introduce to probability (amongst other things) and to prepare

you for statistics, not to teach any statistics.  However, the line between probability and statistics

can be very fine.  

The binomial distribution is absolutely essential to statistics.  Many tests come down to

a succession of success-failure type experiments.  Let us consider a typical problem.  Repunzel

does an ESP test of JeNifer.  Repunzel asks JeNifer the suits of all 52 cards in a well-shuffled

deck of ordinary playing cards.  They go through the entire deck and at each card Repunzel

records the result but gives no indication to JeNifer of her score.1  Since there are four equally

likely suits, the expected result would be for JeNifer to score 13 out of 52 correct.  However,

JeNifer scores 17 out of 52.  Our question is, did JeNifer do so well just by luck, or could there

be other explanations.2  

The standard approach to the above question is to ask ourselves, how likely is it that

JeNifer could have done at least that well just by luck.  That is, assume that she only has luck.

What is the probability that she should guess 17 or more correct?  We do not ask what is the

probability that she should guess exactly 17 correct just by luck, because that is too restrictive.

Guessing exactly 13 correct has a fairly small probability (.127) even though that is the most

likely case.  Formally, we assume the Null Hypothesis that JeNifer only has luck and we test how

likely the outcome was under that assumption.  Again, we are testing the outcome of 17 or more

correct.  In other types of problems we might test the probability of missing 13 correct by 4 or

more; that is what is the probability of 17 or more correct or 9 or fewer correct.  What test we
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conduct depends on the problem and can be quite judgmental.  In the case, we are interested in

the probability of doing better than expected.  Usually we do not worry that someone did poorer

than expected because of ESP.1  

It turns out that the probability that someone would guess 17 or more correctly just by

luck is roughly .1322.  We could reject that null hypothesis with a significance level of .1322,

or we could say with confidence of 85% (since we did not quite reach 90%).  Unfortunately for

Repunzel and JeNifer, nobody is impressed by that.  90% confidence is considered minimal and

in this sort of thing people want 99% confidence.

The reason, that statistics seems complicated is that it takes a while to digest all of these

concepts, and it is not trivial to estimate the probability of achieving a certain score by luck.

There are binomial tables for answering such questions, but even reading them properly can give

some people difficulty, and they will often not cover the case you are interested in.  The more

usual procedure is to use the approximation to the binomial by the Normal distribution, which

requires translating the problem to the Normal distribution and then using a Normal table.

However, we can avoid all of this table reading.  The above methods were created before

computers were in use.  We can estimate the probability of guessing 17 or more cards correctly

by simulating the experiment by computer.  We write a program that simulates making 52

guesses each with a .25 probability of success.  We have the program do this say 1000 times, and

we record the proportion of cases where the program guessed correctly 17 or more times.  If you

know how to program, this program can be written in a language such as Pascal or even Basic

in roughly 15 minutes.  On a modern microcomputer you can get an answer within 5 minutes of

starting the program.  This sort of method is known as computationally intensive.  Until recently

it was considered impractical.  However, computationally intensive techniques have three great

advantages over traditional techniques. 
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1: Computationally intensive techniques are easier to understand conceptually and therefore

facilitate learning statistics

2: Computationally intensive techniques are easy to implement on today's computers. 

3: Computationally intensive techniques often require fewer assumptions than traditional

techniques.  Therefore the results are often more meaningful and convincing than results

from traditional methods.
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1. With p = ½ and q = ½ the binomial distribution formula is:

The last step follows from the law of exponents.

2. .02799

3. .00164

4. .29030

5. .26127

6. This is just the sum of the last two answers:  .55158

7. P(0) + P(1) = .00164 + .01720 = .01884

8. P($2) = 1 ! (P(0) + P(1)) = .98116

9. P(7 * $2) = P(7 and $2)&P($2) =  P(7)&P($2) = .02853

10. P(4 or 5 * $2) = P((4 or 5) and $2)&P($2) =  P(4 or 5)&P($2) = .56217

11. c

12. 1&16

13. (.5)n!1A(.5) = (.5)n

14. (.5)n.  This can be proven in two ways.  First if we set up the infinite sum, it turns out to
be a geometric series for which the formulas were given earlier.  The second solution is
to observe that the only way that the first heads can occur after throw n is precisely the
case that the first n throws are tails.

15. (1&36)2 + (2&36)3 + (3&36)4 + (4&36)5 + (5&36)6 + (6&36)7 + 
(5&36)8 + (4&36)9 + (3&36)10 + (2&36)11 + (1&36)12 = 7

16. This is sort of a trick question.  Notice that for every difference a!b there is an equally
likely b!a.  Hence the expected difference is 0.  The expected absolute difference is
35/18.  This is solved by brute force: that is by calculating all of the cases.

17. The expected value of the max is 161/36.  The expected of the min is 91/36.  Note that
the expected value of the min plus the absolute difference gives you the max!!!!
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18. 12.25.  This can be solved by simply working out all of the cases.  However, a theorem,
not used in this book, states that the expected value of the product of two independent
variables is the product of their expected values.


