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1Infinite Markov chains require calculus.  However, finite Markov chains are  powerful
in their own right.
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Markov Chains

Definition of a Markov Chain

Markov chains are one of the most fun tools of probability; they give a lot of power for

very little effort.  We will restrict ourselves to finite Markov chains.  This is not much of a

restriction.  We get much of the most interesting cases and avoid much of the theory.1  This

chapter defines Markov chains and gives you one of the most basic tools for dealing with them:

matrices.

A Markov chain can be thought of in terms of probability graphs.  A Markov chain has

a non-empty collection of states.  Each state is represented by a vertex of the graph.  Leaving

each vertex are arcs (or an arc).  These arcs are labeled with non-negative numbers representing

probabilities;  the numbers leaving an arc add up to one.  We restrict ourselves to graphs that are

connected (it is possible to travel from any vertex to any other vertex along the arcs although not

necessarily along the directions of the arcs).  Using the terminology of Chapter 1, we say we are

interested in graphs that are at least weakly connected (if we can go from any node to any other

node always along the directions of the arcs, the graph is strongly connected).  We also restrict

ourselves to graphs with finite numbers of vertices and arcs.
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Figure 1 A Markov Chain with Five
States.

Figure 1 gives the graph of a five state

Markov chain.  The property of a chain that the

name Markov refers to is independence.  For

example, if one is in state b, the probability of

going to state a is .5 regardless of which states

were occupied before state a (and of course the

probability of going to state c is .2, and the prob-

ability of going to state d is .3).  Once entering a

state, one always leaves it.  This is the reason that

there are always arcs leaving each node.  The

labels of these arcs must add up to one since the

probability of going somewhere is 1.  If we in

fact want to stay at a state, we can have an arc

from the state to itself as in state a.  In this case,

once we enter state a, we remain there because the

only arc leaving a returns to a (again, such an arc

is called a loop).  

State Vectors and Transition Matrices

A state vector is a row matrix that represents the probability of being in each state.  For

example, still using the Markov chain of Figure 1, consider the following state vectors:

Sa describes the case when there is a .2 chance of the chain being in each state.  Sb is the case

where the chain is in state b.  Sc is the case where the chain has .3 probability of being in state
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b, .4 probability of being in state c, and .3 probability of being in state d.  A transition matrix is

the matrix representation of a Markov chain.  For example the matrix corresponding to the

Markov chain of Figure 1  is:

Each row corresponds to a particular vertex.  Ordinarily we will order the rows in the

natural order, a-b-c-, and so on.  The columns are given the same order.  In this case, the rows

correspond in order to a-b-c-d-e, and the columns are ordered in the same way.  The rows and

columns should enumerate the vertices in the same order as does a state vector.  Therefore each

element of the matrix represents a pair of vertices.  For example, instead of speaking of the {2,3}

element as we did in Chapter 6, we can speak of the {b,c} element.  The interpretation of the

second row, is that on leaving vertex b, the chain goes to vertex a with probability .5; the chain

goes to vertex b with probability 0; to vertex c with probability .2; to vertex d with probability

.3, and to vertex e with probability 0.  Entries on the main diagonal of the matrix correspond the

probabilities of a vertex going to itself.  In this example, the element {1,1} corresponds to the

fact that the vertex a goes to itself with probability 1.  A matrix is a transition matrix if and only

if each row has non-negative entries that add up to 1.  Notice that the columns do not have to add

up to anything.  

If you notice a strong similarity between transition matrices and the incidence matrices

of Chapter 6, you are correct.  They can be operated on in the same manner.  Let us consider the

Markov chain in Figure 1.  We will denote its transition matrix by M (as in the example above).

Let Si be the state vector after transition i.  That is, the chain will start with state vector S0.  The

state vector representing the chain after one transition will be S1.  After two transitions we have
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1The proof is in much the same spirit as the proof of the properties of incidence matrices
which was briefly discussed in Section 18.
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If we start with state vector S0, and with transition matrix, M, then after n transitions, we

have state vector:  Sn = S0AMn.

state vector S2.  Let us define S0 = (0,0,0,1,0).  That is, we will start the chain in state d.  After

1 transition we must be in state c.  Hence, S2 = (0,0,1,0,0).  After one more transition we are in

state e; so S3 = (0,0,0,0,1).  From e we have a .5 probability of going to state b, and a .5

probability of going to state c.  Hence S4 = (0,.5,.5,0,0).

In the example just given, where S0 = (0,0,0,1,0) represents the case we start in state d,

S0AM128 =  (.99999925, .00000016, .00000026, .00000005, .00000029).  That is, we end up in

state a, with probability .99999925 and in state e, with probability .00000029.  In fact, you

should be able to convince yourself that in this example, that wherever you start, you should

eventually wind up in state a.  Once in state a, you can't leave.  Such a state (that returns to itself

immediately with probability 1) is called an absorbing state.  The proof that the matrix

multiplication of state vectors and transitions matrices has the above property is not difficult; it

can be done by careful examination of the meaning of matrix multiplication.1 

Example
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Figure 2  Markov Chain with Five States.

Figure 3 State Probabilities at 5, 10, 15, 20, 25, 30
Transitions.

If in the Markov chain of Figure 2 if we start in state A, then the initial state vector is

S0 = (1,0,0,0,0).  If we denote the transition matrix by M, then the state vector after 1 transition

is given by S1 = SAM.  The state vector after 2 transitions is S2 = (SAM)AM = SAM2; after 3

t r a n s i t i o n s  i t  i s

S3 = ((SAM)AM)AM = SAM3; and

after 5 transitions we have

S5 = SAM5.  Using this approach

S5, S10, through  S30 are computed

in Figure 3.

After 5 transitions, the state vector

is S5 = (.09,  .023, .023, .77, .096).

That is, starting in state A, after 5

transitions, the probability that we

are in state A is .09; the prob-

ability we are in state B is .023,

and so on.  After 15 transitions the

probabilities are fixed at (.073,
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1The alert reader may notice that we have not found fixed probabilities but that we have
probabilities repeat every 5 transitions.  This is suggested by the fact that there are 5 states and
we are looking at intervals of 5 transitions.  However, this could only happen if the  graph were
periodic, and we will see later that this is not the case.
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.037, .073, .735, .082).1  If we start in state C, that is if we start with initial vector S0 = (0,0,1,0,0)

as in Figure 4, the probabilities become fixed at the same values.
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Figure 4 State Probabilities at 5, 10, 15, 20, 25, 30
Transitions

For this particular Markov

chain, the long term probabilities

are independent of where we start.

We will explore this in Section 34.
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Figure 5 A Markov Chain with Four
States

For the following exercises use Figure 5.

If you need to take powers and products of

matrices, an excellent tool is a spreadsheet.  When

working by hand, if you need a matrix to a high

power, the quickest approach is to use powers of

2.  For example, if you want the 20'th power of M,

square M successively until you get M2, M4, M8,

and M16.  Then M20 = M16AM4.

G   Exercise  1 Give the transition matrix for the Markov chain in Figure 5.

G   Exercise  2 If we start in state B, what is the probability of being in state A after 8

transitions?  (If you can't do the matrix multiplications, at least write out

the matrix expression indicating the answer and precisely where in the

result the answer is.)

G   Exercise  3 If we start in state B, what is the probability of being in state D after 8

transitions?  

G   Exercise  4 If we start in state C, what is the probability of being in state A after 16

transitions?  What is the probability of being in state D?
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1.

2.

The answer is .989.

3. The answer is .011 (as shown on the previous problem).

4.
The probability of ending in state A (after 16 transitions) is .89 and state D is .11.  (Note
that both answers are rounded off, since the probability of being in state B or C is greater
than 0, but just barely.)


