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A basic problem for businesses and manufacturers is, when ordering supplies, to determine
what quantity of a given item to order.  A great deal of literature has dealt with this problem
(unfortunately many of the best books on the subject are out of print).  Many formulas and
algorithms have been created.  Of these the simplest formula is the most used: The EOQ (economic
order quantity) or Lot Size formula.  The EOQ formula has been independently discovered many
times in the last eighty years. We will see that the EOQ formula is simplistic and uses several
unrealistic assumptions.  This raises the question, which we will address: given that it is so
unrealistic, why does the formula work so well?  Indeed, despite the many more sophisticated
formulas and algorithms available, even large corporations use the EOQ formula.  In general, large
corporations that use the EOQ formula do not want the public or competitors to know they use
something so unsophisticated.  Hence you might wonder how I can state that large corporations do
use the EOQ formula.  Let’s just say that I have good sources of information that I feel can be relied
upon.

The Variables of the EOQ Problem
Let us assume that we are interested in optimal inventory policies for widgets.  The EOQ

formula uses four variables.  They are:

D: The demand for widgets in quantity per unit time.  Demand can be thought of as a
rate.

Q: The order quantity.  This is the variable we want to optimize.  All the other variables
are fixed quantities.

C: The order cost.  This is the flat fee charged for making any order and is independent
of Q.

h: Holding costs per widget per unit time.  If we store x widgets for one unit of time,
it costs us x@h.

The EOQ problem can be summarized as determining the order quantity Q, that balances the
order cost C and the holding costs h to minimize total costs.  The greater Q is, the less we will spend
on orders, since we order less often.  On the other hand, the greater Q is the more we spend on
inventory.   Note that the price of widgets is a  variables that does not interest us.  This is because
we plan to meet the demand for widgets.  Hence the value of Q has nothing to do with this quantity. 
If we put the price of widgets into our problem formulation, when we finally have finally solved the
optimal value for Q, it will not involve this term.  
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Figure 1  The EOQ Process
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The Assumptions of the EOQ Model
The underlying assumptions of the EOQ problem can be represented by Figure 1.  The idea

is that orders for widgets arrive instantly and all at once.  Secondly, the demand for widgets is
perfectly steady.  Note that it is relatively easy to modify these assumptions; Hadley and Whitin
[1963] cover many such cases.  Despite the fact that many more elaborate models have been
constructed for inventory problem the EOQ model is by far the most used.  

An Incorrect Solution
Solving for the EOQ, that is the quantity that minimizes total costs, requires that we

formulate what the costs are.  The order period is the block of time between two consecutive orders. 
The length of the order period, which we will denote by P, is Q/D.  For example, if the order
quantity is 20 widgets and the rate of demand is five widgets per day, then the order period is 20/5,
or four days.  Let Tp be the total costs per order period.  By definition, the order cost per order period
will be C.  During the order period the inventory will go steadily from Q, the order amount, to zero. 
Hence the average inventory is Q/2 and the inventory costs per period is the average cost, Q/2, times
the length of the period, Q/D.  Hence the total cost per period is:

If we take the derivative of Tp with respect to Q and set it to zero, we get Q = 0.  The problem is
solved by the device of not ordering anything.  This indeed minimizes the inventory costs but at the
small inconvenience of not meeting demand and therefore going out of business.  This is what many
people, perhaps most people do, when trying to solve for the EOQ the first time.

The Classic EOQ Derivation
The first step to solving the EOQ problem is to correctly state the inventory costs formula. 

This can be done by taking the cost per period Tp and dividing by the length of the period, Q/D, to
get the total cost per unit time, Tu:
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In this formula the order cost per unit time is CD/Q and Qh/2 is the average inventory cost per unit
time.  If we take the derivative of Tu with respect to Q and set that equal to 0, we can solve for the
economic order quantity (where the exponent * implies that this is the optimal order quantity):

If we plug Q* into the formula for Tu, we get the optimal cost, per unit time:

The Algebraic Solution
It never hurts to solve a problem in two different ways.  Usually each solution technique will

yield its own insights.  In any case, getting the same answer by two different methods, is a great way
to verify the result.  If we multiply the formula for Tu on both sides by Q, we get, after a little
rearranging, a quadratic equation in Q:  

Next we divide through by h/2 to change our leading coefficient to 1.  Completing the square, we
get:

 
Note that this equation has two variables.  Tu is a function of Q (and could well be written as Tu(Q)). 
Hence we have a curve in the Cartesian plane with axes labeled Q and Tu.  We want the value of Q

that minimizes Tu.  Notice that the term  is a constant.  Writing that constant as k, and
2CD

h
rearranging the equation, we get:  
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Figure 2  Total Cost as a Function of Order Quantity
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If we set the quadratic term to zero, then .  Any change in the quadratic term from zeroT h ku 

increases the size of Tu.  Hence the optimal size of Tu is which just happens to be h k

which is the value we found earlier.  The quadratic term is zero if and only if . 2CDh Q
T

h
u

This gives us the identity .  Q h Tu
* *

An Example
It is useful at this point to consider a numerical example.  The demand for klabitz’s is 50 per

week.  The order cost is $30 (regardless of the size of the order), and the holding cost is $6 per
klabitz per week.  Plugging these figures into the EOQ formula we get:

This brings up a little mentioned drawback of the EOQ formula.  The EOQ formula is not an integer
formula.  It would be more appropriate if we ordered klabitz’s by the gallon.  Most of the time, the
nearest integer will be the optimal integer amount.  In this case, the total inventory cost Tu is $134.18
per week when we order 22 klabitz’s.  If instead, we order 23 klabitz’s the cost is $134.22.  
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Figure 3  Order and Holding Costs
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A graph of this problem is illuminating: Figure 2.  Because the graph is so flat at the optimal
point, there is very little penalty if we order a slightly sub-optimal quantity.  We can better
understand the graph if we view the combined graphs of the order costs and the holding costs given
in Figure 3.  The basic shapes of all three graphs (total costs, order costs, holding costs) are always
the same.  The graph of order costs is a hyperbola; the graph of holding costs is linear; and as a

result the graph of the total costs (Tu) is convex.  This can also be seen in that the function is
dT
dQ

u

increasing and the function

is positive every where.  If we plug the optimal quantity, Q*, into this last formula we get:
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Ordinarily this last quantity is very small, which indicates that the total cost of inventory Tu changes
very slowly with Q (in the optimal region).  Hence the assumptions of the EOQ model do not have
to be accurate because the problem usually is tolerant of errors.

If you study closely the graphs in Figure 3, it may seem clear to you that their sum, Tu, 
reaches a minimum precisely where the two graphs intersect; that is at the point where order costs

and holding costs are equal.  The gives us the equality .  Solving that equality is the easiest
Qh CD

Q2 
way to derive the EOQ formula. 

Why Use the EOQ Formula At All?
A problem that occurs in applied mathematics more than pure is that we hang onto formulas

and techniques that have been made (mostly) obsolete by technology.  Try to think what it was like
to solve a problem like the one here forty years ago.  The simple operation of division was either
done by hand, or by use of logarithms out of a table, or less exactly by using a slide rule.  It was not
practical to simply calculate the total cost of inventory for a large set of order quantities and to
compare answers.  The EOQ formula simplified the problem to a minimal number of calculations. 
However, now it is quite simple to calculate total costs of inventory for hundreds of order quantities,
and this can be done from scratch in less time than it use to take to employ the EOQ formula.  We
can do it with a spreadsheet. 

The spreadsheet in Figure 4, takes the problem from the previous example, and computes
for a large variety of quantities the order costs, holding costs, and total costs.  It took about 15
minutes to set this spreadsheet up, and most of that time was spent on formatting (for example
putting in lines).  The formulas for order costs and holding costs were inserted to calculate the
respective entries for the order quantity of one.  The total cost entry is defined to be the sum of the
first two entries (although its column comes first).  Then the formulas are copied down the length
of the order quantity column.  The only trick is that you must remember to use absolute addresses
for the fixed parameters.  Once the spreadsheet is set up, the values for C, D, and h can be changed
and the entire spreadsheet will recalculate in less than a second.  Note also, that the EOQ formula
itself is calculated at the top of the spreadsheet: its result can be compared with the columns.  The
spreadsheet also provided the graphs in Figure 2 and Figure 3.  

Spreadsheets are superb for many problems in discrete mathematics.  Knowing this, software
companies have endowed current spreadsheets with hundreds of scientific functions.  Just like
formulas, the spreadsheet can be made to incorporate assumptions more realistic than those in the
EOQ model.  In many cases it is easier to do this with spreadsheets and more illuminating.
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Demand/unit time order cost holding cost item /unit time 
50 30 6 

EOQ = 22.3606797749979 

Order Quantity Total Cost Order Cost Holding Cost
1 1503.00 1500.00 3 
2 756.00 750.00 6 
3 509.00 500.00 9 
4 387.00 375.00 12 
5 315.00 300.00 15 
6 268.00 250.00 18 
7 235.29 214.29 21 
8 211.50 187.50 24 
9 193.67 166.67 27 

10 180.00 150.00 30 
11 169.36 136.36 33 
12 161.00 125.00 36 
13 154.38 115.38 39 
14 149.14 107.14 42 
15 145.00 100.00 45 
16 141.75 93.75 48 
17 139.24 88.24 51 
18 137.33 83.33 54 
19 135.95 78.95 57 
20 135.00 75.00 60 
21 134.43 71.43 63 
22 134.18 68.18 66 
23 134.22 65.22 69 
24 134.50 62.50 72 
25 135.00 60.00 75 
26 135.69 57.69 78 
27 136.56 55.56 81 
28 137.57 53.57 84 
29 138.72 51.72 87 
30 140.00 50.00 90 
31 141.39 48.39 93 
32 142.88 46.88 96 
33 144.45 45.45 99 
34 146.12 44.12 102 
35 147.86 42.86 105 
36 149.67 41.67 108 
37 151.54 40.54 111 
38 153.47 39.47 114 
39 155.46 38.46 117 
40 157.50 37.50 120 

Figure 4 A Spreadsheet Analysis of the Inventory Problem 
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